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Abstract

Under which conditions are extrinsic credit �uctuations socially optimal? In order to answer this question
we characterize constrained-e¢ cient allocations in an in�nite horizon, two-good economy with limited
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incentive feasible, and it is implemented with take-it-or-leave-it o¤ers and �not-too-tight�solvency con-
straints. If agents meet in a centralized location, constrained-e¢ cient allocations can be non-stationary,
in which case they feature a credit boom followed by stagnation due to �too-tight�solvency constraints.
We also characterize constrained-e¢ cient allocations under partial commitment by the planner. If com-
mitment is low, the economy experiences rare but pronounced credit crunches. If commitment is high,
the economy experiences infrequent but large credit booms.
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1 Introduction

Most �nancial crises are preceded by a large build-up in private agents�debt followed by a credit contraction

and a prolonged period of stagnation with low economic activity.1 These �uctuations in the use and avail-

ability of credit are typically viewed as socially ine¢ cient as they create excess volatility relative to economic

fundamentals. In this paper we challenge this view and provide a simple environment where endogenous

credit �uctuations can occur in equilibrium and are socially desirable ex ante.

The environment we consider is an in�nite-horizon, two-good economy similar to the one in Gu et

al. (2013b), GMMW thereafter. In the presence of idiosyncratic shocks, this economy features a role for

intertemporal trades interpreted as unsecured credit arrangements (e.g. consumption of one good in exchange

for promises of another good). Since agents lack commitment, those trades are sustained through public

monitoring.2 Using an equilibrium approach, GMMW show that this economy can generate credit cycles

due to a pecuniary externality according to which endogenous debt limits a¤ect the relative price of goods

(hence, the importance of having two goods). In brief, high debt limits in the future generate high (relative)

prices of goods consumed on credit that reduce the private gains from having access to credit in the future.

As a result, the punishment from being excluded from credit is reduced, which generates a low debt limit in

the current period.

Debt limits in GMMW are obtained by imposing the �not-too-tight�solvency constraints of Alvarez and

Jermann (2000), AJ thereafter, according to which in every period agents can issue the maximum amount of

debt that is incentive-compatible with no default. While these constraints implement constrained-e¢ cient

allocations in the AJ one-good economy, it is not necessarily the case in an economy with multiple goods,

as pointed out by Kehoe and Levine (1993). Therefore, instead of taking as primitives arbitrary solvency

constraints, we derive them from a mechanism design approach which characterizes incentive-feasible alloca-

tions that maximize ex-ante welfare (see Wallace 2010 for a survey of this approach in monetary economics).

In contrast to most of this literature, with the noticeable exception of Cavalcanti and Erosa (2008), we do

not restrict the set of allocations to stationary ones and characterize instead the dynamic contracting prob-

lem between the planner and private agents. In doing so, we distinguish two market structures commonly

used in the literature, pairwise meetings and large-group meetings, and we impose the corresponding core

requirement.

1Rogo¤ (2016) argue for the existence of debt supercycles characterized by credit booms and credit crunches. Lo and Rogo¤
(2015) argue that sluggish economic growth after the onset of the �nancial crisis is due to signi�cant pockets of private, external
and public debt overhang.

2 In the absence of public record keeping, the environment corresponds to the New-Monetarist framework of Lagos and Wright
(2005) with a few di¤erences.
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We establish the following results. If agents are matched bilaterally then the constrained-e¢ cient al-

location corresponds to the incentive-feasible, stationary allocation with the highest output level. It is

implemented with take-it-or-leave-it o¤ers by borrowers and �not-too-tight�solvency constraints, which ex-

tends the AJ welfare theorem to economies with pairwise meetings. In such an economy, credit �uctuations

would lower welfare, thereby capturing the common wisdom.

If all agents meet together in a centralized location, then the core requirement is equivalent to competitive

pricing. Under strictly convex production costs, the price of credit goods increases with aggregate consump-

tion and hence buyers�surpluses vary in a non-monotone fashion with aggregate borrowing. In turn, large

borrowing is incentive-compatible if buyers can anticipate large surpluses in the future. Therefore, in order

to extract large social gains from trade in the current period, the planner must promise low prices for future

consumption, which requires lower aggregate consumption in the future. In other words, the planner faces a

trade-o¤ between contemporaneous and future output. If preferences are such that the temptation to renege

on future promises is low (in a sense to be made precise below), then the constrained-e¢ cient allocation is

non-stationary. The initial period features an output level that is larger than the highest steady state, which

we interpret as a credit boom. It is followed by a long-lasting stagnation where output is lower than the

highest steady state due to solvency constraints that are overly tight (tighter than what is required to make

repayment incentive-feasible).

The non-stationary constrained-e¢ cient allocation is time inconsistent in that the planner would like

to revise the allocation after the initial credit boom. Our result is robust to this time-inconsistency in the

following sense. We introduce partial commitment according to which the planner can reoptimize infrequently

when a sunspot state is realized. If the planner�s commitment power is low, the economy experiences rare but

pronounced credit crunches. If it is high, then the economy experiences infrequent but large credit booms.

1.1 Related literature

Seminal contributions on limited-commitment economies include Kehoe and Levine (1993), Kocherlakota

(1996), and AJ. We di¤er from Kocherlakota (1996) and AJ in that we study a two-good production economy

under alternative market arrangements. Our environment is a variant of the Lagos-Wright (2005) and

Rocheteau-Wright (2005) frameworks, in that we use a two-stage structure and quasi-linear preferences, but

we replace currency with a public record-keeping technology, as in Sanches and Williamson (2010, Section

4). Following GMMW, preferences are generalized to parametrize incentives to renege on obligations that

span across multiple stages. Mechanism design was �rst applied to this environment with currency by Hu,
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Kennan, and Wallace (2009).3 Our implementation results are related to the Second Welfare Theorem in AJ

in that we provide a necessary and su¢ cient condition under which this theorem applies to our environment.

Kehoe and Levine (1993, Section 7) conjectured that punishments based on partial exclusion might allow the

implementation of socially desirable allocations.4 This conjecture is veri�ed in our economy with the caveat

that the extent of exclusion has to vary over time. Gu et al. (2013a, Section 7) studies optimal dynamic

contracts between a lender and a borrower in a similar environment with pairwise meetings. In contrast, we

characterize the constrained-e¢ cient allocation that maximizes ex-ante social welfare, and we consider both

pairwise meetings and centralized meetings. Under centralized meetings the planner internalizes the e¤ects

of aggregate consumption on relative prices, which is key for the existence of non-stationary constrained-

e¢ cient allocations. Finally, we are related to the vast literature on equilibrium credit cycles and pecuniary

externalities including Kiyotaki and Moore (1997) and Myerson (2012), among others.

2 Environment

Time is discrete, goes on forever, and starts with period 0. Each date has two stages, 1 and 2. There is a

single, perishable good at each stage. There is a continuum of agents of measure two divided evenly into

buyers and sellers.5 The labels �buyer� and �seller� refer to agents�roles in stage 1: only the sellers can

produce the stage-1 good and only the buyers consume it. In each period a fraction � 2 (0; 1] of buyers and

sellers chosen at random in the whole population are matched together. The remaining 1�� are unmatched

and stay in autarky for one period. We will make two assumptions regarding the matching process: either

matched agents are allocated in pairs composed of one buyer and one seller or they meet in a single large

group. Matches are destroyed at the end of each period.

Preferences are additively separable over dates and stages. The stage-1 utility of a seller who produces

y 2 R+ is �v(y), while that of a buyer who consumes y is u(y), where v(0) = u(0) = 0, v and u are strictly

increasing and di¤erentiable with v convex and u strictly concave, and u0(0) = +1 > v0(0) = 0. Moreover,

there exists ~y > 0 such that v(~y) = u(~y). We de�ne y� = argmax [u(y)� v(y)] > 0.

A buyer produces the stage-2 good by transforming ` units of stage-1 labor into ` units of stage-2 good.

3Applications of mechanism design to monetary theory include Kocherlakota (1998) and Kocherlakota and Wallace (1998),
Cavalcanti and Erosa (2008), Cavalcanti and Nosal (2011), Cavalcanti and Wallace (1999), and Hu and Rocheteau (2013, 2015),
among others. Wallace (2010) provides a review of the literature.

4Azariadis and Kass (2013) relaxed the assumption of permanent autarky and assumed that agents are only temporarily
excluded from credit markets. Gu et al. (2013a) and GMMW allow for partial monitoring, which is formally equivalent to
partial exclusion, except that the parameter governing the monitoring intensity, �, is time-invariant. Kocherlakota and Wallace
(1998) consider the case of an imperfect record-keeping technology where the public record of individual transactions is updated
after a probabilistic lag.

5The assumption of ex-ante heterogeneity among agents is borrowed from Rocheteau and Wright (2005). Alternatively, one
could assume that an agent�s role in the DM is determined at random in every period without a¤ecting any of our results.
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Production materializes in stage 2 but ` is perfectly observable in stage 1. Sellers do not have the technology

to produce the stage-2 good. A seller�s utility from consuming c units of stage-2 good is c. A buyer�s

utility from consuming his own output is �c where � 2 [0; 1] will play a key role to parameterize the limited

commitment problem. The inability of agents to commit to future actions has some bite when � > 0 because

in stage 2 buyers have incentives to renege on promises made in stage 1 by consuming their own output.

Agents�common discount factor across periods is � = 1=(1 + r) 2 (0; 1).

Finally, there is a monitoring technology allowing all actions of matched agents to be publicly recorded.

However, agents who are matched at the beginning of a period can drop out without their participation

decision being recorded.

3 Constrained-e¢ cient allocations

We characterize constrained-e¢ cient allocations de�ned as allocations that maximize social welfare subject

to incentive feasibility constraints. Incentive constraints require that there are no opportunities to defect

from a proposed allocation either individually or by forming coalitions, where feasible coalitions depend on

the market structure. We will consider two alternative market structures, pairwise meetings and large-group

meetings, that imply di¤erent core requirements.

3.1 Optimal mechanism with pairwise meetings

Suppose �rst that buyers and sellers are matched bilaterally. The planner chooses symmetric allocations,

f(yt; `t)g+1t=0 , in order to maximize the discounted sum of all match surpluses subject to incentive-feasibility

conditions, where yt is stage-1 output produced by sellers in a match and `t is the production of stage-2

goods by buyers in a match. This problem can be written as:

max
f(yt;`t)g

+1X
t=0

�t� [u(yt)� �(yt)] (1)

s.t. �`t �
+1X
s=1

�s� [u(yt+s)� `t+s] (2)

�(yt) � `t � u(yt): (3)

The planner�s objective in (1) is the sum of buyers� and sellers� utilities in stage 1. It does not include

utility �ows associated with the production/consumption of the stage-2 good since having buyers produce

the stage-2 good for their own consumption is socially ine¢ cient and does not help with incentive constraints,

and sellers�utility of consumption cancels out with buyers�disutility of production. Inequality (2) captures

the limited commitment problem in stage 2. It guarantees that buyers prefer to deliver the stage-2 good to
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sellers instead of reneging and consuming it. The left side is a buyer�s utility of consuming `t units of his own

production while the right side is the discounted sum of utility �ows from the proposed allocation. Implicit

in that formulation is the fact that in the presence of perfect monitoring the buyer can be punished by

permanent autarky from departing from the proposed allocation, which generates a continuation value equal

to 0. (It is easy to check that strategies that consist of punishing defectors form a sequential equilibrium.

See Bethune, Hu, and Rocheteau, 2017, for a detailed characterization of all equilibria.) The conditions in

(3) are participation constraints of matched buyers and sellers in stage 1. Since matched agents can choose

to drop out and stay in autarky for one period without their action being recorded, we need to make sure

that they receive a positive surplus from their intra-period trades, where a buyer�s surplus is u(yt)� `t and

a seller�s surplus is ��(yt) + `t. Coalition-proofness in pairwise meetings requires that yt � y�, which is

satis�ed endogenously (and hence ignored thereafter). We call a solution to (1)-(3) a constrained-e¢ cient

allocation (cea thereafter).

For a given fytg, a necessary condition for participation constraints to hold is that they hold when

`t = v(yt). As a result, the incentive constraints can be collapsed into a single inequality,

��(yt) �
+1X
s=1

�s� [u(yt+s)� �(yt+s)] : (4)

This reduced participation constraint shows that higher future output in [0; y�] relaxes the participation

constraint allowing for larger current output. In the following we use ymax to denote the highest, stationary

level of output consistent with (4). It is the unique positive solution to �r�(ymax) = � [u(ymax)� �(ymax)].

Proposition 1 (cea under pairwise meetings)

1. If y� � ymax, then any cea is such that yt = y� and `t 2 [v(y�); `] for all t 2 N0, where ` = �[u(y�)�

v(y�)]=�r.

2. If y� > ymax, then the cea is such that yt = ymax and `t = v(yt) for all t 2 N0.

If agents are su¢ ciently patient (r low) and if the temptation to renege is not too large (� low), then �rst-

best allocations are implementable. The equilibrium size of ` is indeterminate when y� < ymax, and we give

an upper bound, `, for it (which may not be achievable every period). In contrast, if �r > � [u(y�)=�(y�)� 1],

then the cea is yt = ymax < y�, which corresponds to the highest steady state.

We now turn to the implementation of the cea with an explicit bargaining protocol and solvency con-

straints. Suppose buyers set the terms of the loan contract unilaterally and cannot promise to repay more
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than some endogenous debt limit, dt. The value function of a buyer solves

V bt = �max
yt;`t

�
u(yt)� `t + �V bt+1

	
+ (1� �)�V bt+1 s.t. `t = �(yt) � dt. (5)

With probability �, a buyer is matched in stage 1 in which case he extends an o¤er, (yt; `t), that makes

the seller indi¤erent between accepting and rejecting, `t � �(yt) = 0. The o¤er must also satisfy a solvency

constraint according to which the buyer cannot promise to repay more than dt. The solution is yt =

min
�
y�; ��1(dt)

	
. The highest debt limit that is consistent with repayment, the �not-too-tight� solvency

constraint of AJ, solves �dt = �V bt+1. In a stationary equilibrium it solves r�d = � [u(y)� v(y)] where

y = min
�
y�; ��1(d)

	
. If r�v(y�) � � [u(y�)� v(y�)] then d � v(y�) and y = y� � ymax. If r�v(y�) >

� [u(y�)� v(y�)] then d = v(ymax) < v(y�) and y = ymax < y�, which corresponds to cea�s in Proposition 1.

Hence, we have the following implementation result.

Proposition 2 (Second Welfare Theorem for economies with pairwise meetings) The cea is im-

plemented with take-it-or-leave-it o¤ers by buyers under �not-too-tight� solvency constraints.

Notice that the cea is not uniquely implemented by the optimal mechanism. Indeed, under buyer take-

it-or-leave-o¤er, any sequence fdtg that satis�es

dt = �f�[u(yt+1)� v(yt+1)] + dt+1g (6)

with yt+1 = minfv�1(dt+1); y�g corresponds to an equilibrium under �not-too-tight�solvency constraints. It

is straightforward to check that there are a continuum of equilibria satisfying (6), and any such equilibrium

with d0 < v(ymax) converges to the autarky steady state. The cea is the only bounded sequence that does

not converge to the autarky equilibrium.6

3.2 Optimal mechanism with large-group meetings

Suppose next that a fraction � of buyers and sellers meet together in a centralized location. If we only impose

individual rationality, then the planner�s problem is subject to the same incentive constraints as before, (2)

and (3), and Proposition 1 holds. However, the restriction according to which no coalition of agents within

a meeting can defect from the proposed allocation is binding when �00 > 0. Indeed, suppose the allocation

is as in Proposition 1 where each seller receives v(y) for producing y. Now a buyer and two sellers can form

a deviating coalition in which each seller produces yt=2 at a total cost of 2�(yt=2) < �(yt) and the buyer

compensates the sellers by o¤ering them a positive surplus. In order to prevent such defections we impose

the core requirement or, equivalently, the competitive equilibrium outcome as in Kehoe and Levine (1993)

6For related results in the context of the AJ model see Bloise et al. (2013).

6



and AJ.7 Matched agents take the price of stage-1 goods in terms of stage-2 goods, p, as given, and by seller�s

optimization, p = v0(y). Hence, in exchange for consuming y of the stage-1 good the buyer must deliver

�(y) = v0(y)y of the stage-2 good. This core requirement also implies that y � y�.

We are now ready to formulate the planner�s problem analogous to (1)-(3). The objective function is still

(1). The reduced participation constraint, (4), now becomes

��(yt) �
+1X
s=1

�s� [u(yt+s)� �(yt+s)] ; (7)

and we have the requirement that yt � y� for all t. In supplemental appendix S2 we show that we can

reformulate this problem in a recursive manner, by introducing the buyer�s �guaranteed minimum utility,�

!t, as a new state variable.8 It is shown there that society�s welfare, denoted V (!), solves the following

Bellman equation,

V (!) = max
y;!0

f� [u(y)� v(y)] + �V (!0)g (8)

s.t. ��(y) + �!
0

�
� 0 (9)

!0 � (1 + r) f! � � [u(y)� �(y)]g (10)

y 2 [0; y�]; !0 2 [0; �!] ; (11)

where �! = �maxy2[0;y�] [u(y)� �(y)] =(1� �) is an upper bound for the lifetime expected utility of a buyer

across all incentive feasible allocations. This upper bound is computed by assigning the maximum surplus

to buyers in every period. This allocation, however, might not satisfy the stage-2 participation constraint,

(9). This incentive constraint is derived from the participation constraint, (7), and it says a buyer is better

o¤ delivering �(y) units of stage-2 good so that he can enjoy the future utility from the proposed allocation,

�!0, rather than consuming his own output, which was intended for sellers�consumption, and enjoy utility

��(y). The novelty is the promise-keeping constraint, (10), according to which the guaranteed minimum

lifetime expected utility promised to a buyer along the equilibrium path, !, is implemented by generating

an expected surplus in the current period equal to � [u(y)� �(y)] and by promising �!0 for the future.

We de�ne two critical values for stage-1 output:

ŷ = arg max
y2[0;y�]

[u(y)� �(y)] (12)

ymax = maxfy > 0 : �[u(y)� �(y)] � r��(y)g: (13)

7See Wallace (2013) for a related assumption in the context of monetary economies. The equivalence result between the
core and competitive equilibrium allocations for economies with a continuum of agents was �rst shown by Aumann (1964). See
supplementary appendix S1 for a proof of this equivalence result in the context of our model.

8Our recursive formulation is similar to the self-generation technique in Abreu et al. (1990), which characterizes the set of
payo¤s generated by Perfect Public Equilibria.

7



The quantity ŷ is the output level that maximizes the buyer�s surplus in stage 1. The quantity ymax is the

highest, stationary level of output that is consistent with the buyer�s participation constraint. We assume

that both ŷ and ymax are well-de�ned and, for all 0 � y � ymax, �[u(y)� �(y)] � r��(y).

Proposition 3 Suppose that y� > ymax > ŷ. There is a unique solution to (8)-(11) in the space of contin-

uous and bounded functions. It is weakly decreasing in ! and concave provided that � is convex.

Using that V is weakly decreasing in ! and the fact that !0 is a choice variable of the planner, the

maximum value for society�s welfare is V (0) = max!2[0;�!] V (!). This gives us the following Proposition.

Proposition 4 (cea under centralized meetings) Assume � is a convex function.

1. If y� � ymax, then the cea is such that yt = y� for all t 2 N0.

2. If ymax � ŷ � y� , then the cea is such that yt = ymax for all t 2 N0.

3. If ŷ < ymax < y� then there are two cases:

(a) If � � � [1� u0(ymax)=�0(ymax)], then the cea is such that yt = ymax for all t 2 N0.

(b) If � < � [1� u0(ymax)=�0(ymax)], then the cea is such that y0 2 (ymax; y�) and yt = y1 2 (ŷ; ymax)

for all t � 1, where (y0; y1) is the unique solution to

max
y0;y1

�
u(y0)� v(y0) +

u(y1)� v(y1)
r

�
(14)

s.t. �(y0) =
�[u(y1)� �(y1)]

�r
: (15)

Provided that agents are su¢ ciently patient, r � �[u(y�)� �(y�)]=��(y�), the cea coincides with a �rst-

best allocation. Note that the condition to implement the �rst best is more stringent than the one under

pairwise meetings since �(y) � v(y), with a strict inequality when v00 > 0. If ymax < y� then the �rst best

violates the buyers�participation constraint, in which case the characterization of the cea depends on the

ordering of ymax and ŷ. As shown in the left panel of Figure 1, if ymax � ŷ then a buyer�s intra-period surplus

and society�s welfare are both increasing with y over (0; ymax). Hence, by raising buyers�consumption in the

future the planner relaxes the current participation constraint allowing for more consumption today. So the

highest steady state, y = ymax, is constrained e¢ cient.

We now turn to the case where ŷ < ymax < y�. For all y 2 (ŷ; y�) a buyer�s surplus, u(y) � �(y),

decreases with y whereas society�s surplus, u(y)� v(y), increases with y, as illustrated in the right panel of

Figure 1. A buyer�s surplus decreases for y > ŷ because of a pecuniary externality according to which an
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Figure 1: Let panel: No trade-o¤ between e¢ ciency and incentives over [0; ymax]; Right panel: A trade-o¤
between e¢ ciency and incentives over [ŷ; y�].

increase in aggregate consumption raises the price of stage-1 goods, p = v0(y), which lowers u(y)� py when

y is su¢ ciently close to y�.9 The negative relationship between buyers�surplus and aggregate consumption

gives rise to an intertemporal trade-o¤ between current and future output. Indeed, in order to raise current

buyers�consumption the planner must relax the repayment constraint, which requires lower future prices

and hence lower aggregate consumption in the future. As a result of this trade-o¤, the highest steady state,

ymax, might no longer be the solution to the planner�s problem.

A key result allowing us to characterize the cea in closed form is that it is always socially optimal to

keep future output constant, yt = y1 for all t � 1. Indeed, we prove that whenever the utility promised to

buyers is ! > !max = �[u(ymax)� �(ymax)]=(1� �) , the repayment constraint is slack and it is optimal to

set !0 = !, which is achieved by keeping consumption constant. In order to establish that !1 � !max we use

a guess-and-verify method allowing us to compute V (!) in closed-form. If ! 2 (!max; �!], !0 = ! and from

(8)

V (!) =
� [u(y)� v(y)]

1� � with � [u(y)� �(y)] = (1� �)!:

Moreover, we show that V (!) = V (!max) for all ! < !max when � � � [1� u0(ymax)=�0(ymax)]. Figure 2

plots V (!) for three cases in Proposition 4. When ymax � ŷ � y� (case 2), V (!) is constant and the cea is

stationary at yt = ymax and !t = !max for t � 1. As � decreases (cases 3a and 3b), the temptation to renege
9The existence of such pecuniary externality in monetary economies with competitive trades and their welfare implications

are discussed in Rocheteau and Wright (2005) and Berentsen, Huber, and Marchesiani (2014, 2016).
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is lower and V (!) shifts upward. Moreover, it is downward sloping for ! > !max.

Figure 2: Value functions for � 2 f2:0; 0:5; 0:17g, � = 1, � = 0:4, u(y) = y, v(y) = 0:32 � y3:1.

If the �rst best cannot be achieved, a buyer�s participation constraint at t = 0 must be binding since

otherwise y0 could be raised without a¤ecting any future incentive constraints. As a result the buyer�s

participation constraint at t = 0 is given by (15) and the magnitude of the trade-o¤ between current and

future output in the neighborhood of the highest steady state is:

dy1
dy0

����
ymax

=
�r�0(ymax)

�[u0(ymax)� �0(ymax)] < 0:

When � � � [1� u0(ymax)=�0(ymax)] exploiting this trade-o¤ is harmful since one would have to implement

a large drop in future output in order to raise current output by a small amount while maintaining a buyer�s

incentive to deliver the stage-2 good.

In contrast, when � is small, it is optimal to exploit the trade-o¤ between current and future output

arising from (15). The optimal allocation is such that y0 > ymax while y1 < ymax. The initial period is

interpreted as a credit boom and future periods correspond to a stagnation phase. Even though, in future

periods, society would be better-o¤ at the highest steady state, u(y1) � v(y1) < u(ymax) � v(ymax), buyers

enjoy a higher surplus, u(y1) � �(y1) > u(ymax) � �(ymax), which relaxes their incentive constraint for

repayment at t = 0. As a result, output and society�s welfare in the initial period are higher than the highest

steady-state levels, u(y0)� v(y0) > u(ymax)� v(ymax).10

10Kehoe and Levine (1993) provide an example where partial exclusion leads to a welfare-improving outcome. See their
Example 2 on p. 875.
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In Figure 3 we illustrate the determination of (y0; y1). The red curve labeled IR corresponds to (15). It

slops downward because of the trade-o¤ between current and future output described above. By de�nition

the IR curve intersects the 45o-line at ymax. The blue curve labeled FOC corresponds to the �rst-order

condition of the problem (14)-(15). Given the strict concavity of the surplus function it is optimal to smooth

consumption by increasing y0 when y1 increases. When � is low the FOC curve is located above the IR curve

at y1 = ymax. Hence, the optimal solution, denoted (y��0 ; y
��
1 ), is such that y

��
0 > ymax and y��1 < ymax.

0y

1y

*y

*y

m axy

m axy

**
0y

**
1y

IR

FOC

Figure 3: Determination of the constrained-e¢ cient allocation, (y0; y1)

We now turn to the implementation of the cea with competitive trades and solvency constraints. The

value function of a buyer solves

V bt = � max
ptyt�dt

�
u(yt)� ptyt + �V bt+1

	
+ (1� �)�V bt+1, (16a)

where pt = v0(yt) by market clearing. The solution is such that yt = y� if v0(y�)y� � dt and v0(yt)yt = dt

otherwise. The sequence of debt limits, fdtg, must satisfy �dt � �V bt+1. Bethune et al. (2017) speci�es

strategies that sustain any such sequence fdtg as an equilibrium outcome. Solvency constraints are said

to be �not-too-tight�when the previous inequality holds at equality. In order to implement y = ymax in

all periods the debt limit must coincide with the �not-too-tight� solvency constraint, i.e., it solves �rd =

� f[u(y)� v0(y)y]g. If the cea is non-stationary then (y0; y1) is implemented with debt limits d0 = v0(y0)y0

and d1 = v0(y1)y1 where d1 < d0 = � f[u(y1)� v0(y1)y1]g =�r. The following implementation result then

follows from Proposition 4.

Proposition 5 (Second Welfare Theorem under large-group meetings) Assume that � is a convex
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function.

1. If either ymax � ŷ � y� or ŷ < ymax < y� and � � � [1� u0(ymax)=�0(ymax)], then the cea is imple-

mented with �not-too-tight� solvency constraints.

2. If ŷ < ymax < y� and � < � [1� u0(ymax)=�0(ymax)], then the cea is implemented with slack repayment

constraints (i.e., �too-tight� solvency constraints) in all future periods, t � 1.

The failure of the AJ Welfare Theorem in the second part of the Corollary is surprising as one would

conjecture that higher debt limits allow society to generate larger gains from trade. This reasoning is valid

in a static sense. If dt increases, the sum of all surpluses in period t, � [u(yt)� v(yt)], increases. However,

there is a general equilibrium e¤ect according to which an increase in dt raises the price of stage-1 goods. If

the economy is close enough to the �rst best, this pecuniary externality lowers buyers�welfare (even though

society as a whole is better o¤) and worsens their incentive to repay their debt in earlier periods.

The conditions in the second part of the Corollary are satis�ed for all the numerical examples in GMMW.

However, GMMW impose �not-too-tight� solvency constraints as part of their equilibrium solution. Our

results show that these constraints fail to implement cea�s and hence the equilibrium cycles in GMMW are

dominated in terms of ex-ante welfare by equilibria with �too-tight�solvency constraints.

3.3 Optimal stochastic credit cycles

If the cea characterized in Proposition 4 is non-stationary, then it is also time-inconsistent in the following

sense: if the planner were to re-optimize at a later date, when the economy is in permanent stagnation,

it would want to deviate and generate a new credit boom. In order to address this time inconsistency we

now study equilibria where the realization of a sunspot state allows the planner to re-optimize. We think

of the planner as having partial (or loose) commitment.11 This sunspot occurs at the beginning of a period

with probability 
, where 
 parameterizes the strength of the planner�s commitment. The planner�s problem

becomes:

V (!) = max
y;!0

f� [u(y)� v(y)] + � [(1� 
)V (!0) + 
V (0)]g (17)

s.t. ��(y) + � [(1� 
)!
0 + 
!0]

�
� 0 (18)

(1� 
)!0 + 
!0 � (1 + r) f! � � [u(y)� �(y)]g (19)

y 2 [0; y�]; !0 2 [0; �!] ; (20)

11This approach is analogous to the formalization of partial or loose commitment by Debortolia and Nunes (2010) and
Kovrijnykh (2013).
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where !0 is the lifetime expected utility of a buyer at the beginning of a cycle when the sunspot state is

realized, i.e.,

!0 =
[1� �(1� 
)]

P+1
�=0 [�(1� 
)]

�
[u(y� )� �(y� )]

1� � ; (21)

where fy�g is stage-1 consumption chosen by the planner. Notice that when choosing fyt; !t+1g the planner

takes !0 as given, i.e., he takes the choice of his future-self when he has the opportunity to reoptimize as

given. Hence, the solution to the planner�s problem under partial commitment involves solving a �xed point

problem. According to (17), the planner is committed to his promise of future utility, !0, with probability

1 � 
. With probability 
 the planner reoptimizes, in which case its continuation value is V (0) = V (!0)

and the buyer�s expected utility is !0. According to (18), a buyer who reneges on his obligation to repay

�(y) gives up the expected continuation value (1� 
)!0 + 
!0. The promise-keeping constraint, (19), states

that a buyer�s discounted expected utility, � [(1� 
)!0 + 
!0], must be equal to the initial promise net of

the expected surplus in the current period. Finally, taking !0 as given, the highest expected utility a buyer

can be promised is

�! =
maxy2[0;y�] [u(y)� �(y)] + �
!0

1� �(1� 
) : (22)

Given !0, V (!) can be computed by iterations of value functions. The policy function gives fy�g which

allows us to update !0 and re-compute V (!). We iterate this procedure until convergence, i.e., until we �nd

a �xed point.

Figure 4: Optimal sunspot equilibria

In Figure 4 we illustrate the solution to the planner�s problem for the parametrization � = 0:1, � = 0:1,

u(y) = y, v(y) = y1:5=1:5, and for 
 2 f0:01:0:5; 0:99g. For each 
 we generate a sequence of realizations for

13



the sunspot state and we plot the associated path for stage-1 output. The solution to the planner�s problem

is qualitatively similar to the one described in Proposition 4. At the start of the cycle, when the sunspot

state is realized, output increases to some level y0 > ymax. For all subsequent periods until the next sunspot

realization, output is low at y1 < ymax. As the stochastic cycle repeats itself, the economy alternates through

credit booms and busts of random lengths.

As 
 approaches 1, e.g., 
 = 0:99 in Figure 4, y0 converges to ymax. If the commitment power is very

low, credit booms are small but they happen in almost all periods. From an outside observer, these booms

are normal times. When the sunspot is not realized, which happens 1% of the time, output falls sharply and

the economy goes through a credit crunch. With low commitment, the economy appears to experience rare

but pronounced credit crunches.

As 
 approaches 0, e.g., 
 = 0:01 in Figure 4, (y0; y1) converges to the �full commitment� cea. In the

infrequent event when the sunspot occurs, the economy experiences a credit boom and output increases

above ymax. Following the boom, output falls slightly below ymax. So with high commitment, the economy

experiences rare but large credit booms.

For intermediate values for 
, e.g., 
 = 0:5 in Figure 4, y0 is signi�cantly larger than ymax while y1

is signi�cantly lower than ymax and both output levels occur frequently. The equilibrium features optimal

(given 
) business cycle �uctuations driven by endogenous changes in the availability of credit.

Figure 5: Unanticipated increase in �

So far the state allowing agents to coordinate on an equilibrium does not a¤ect fundamentals �it is pure

extrinsic uncertainty. Alternatively, the planner could reoptimize � i.e., agents could coordinate on a new

equilibrium �following the realization of real shocks. As an example, consider an unexpected increase in the

preference parameter � at t = 0 from �0� = 0:142 to �0+ = 0:147 as illustrated in Figure 5 for � = 0:95,

u(y) = y, v(y) =
p
y, and � = 0:5. The change in fundamentals makes the incentive problem more severe.
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For all t < 0, yt = y1 corresponding to the initial cea. At t = 0 agents coordinate on the constrained-e¢ cient

equilibrium corresponding to the new value of �. Output and debt levels increase initially and then they fall

to a permanently lower level. So there is a temporary credit boom followed by a permanent credit bust and

a permanent reduction in output below the initial steady state. These allocations are optimal at time t = 0.

4 Conclusion

We asked whether extrinsic credit �uctuations could be socially optimal. To answer this question we charac-

terized constrained-e¢ cient allocations of a two-good, pure credit economy under limited commitment. We

showed that if agents interact through random, pairwise meetings, then constrained-e¢ cient allocations are

constant through time and exhibit the highest output level that is incentive feasible. Such allocations can

be implemented with take-it-or-leave-it o¤ers by buyers/borrowers and �not-too-tight�solvency constraints.

If agents meet in a centralized location, thereby allowing for a larger set of feasible deviations, then the

constrained-e¢ cient allocation can be non-stationary. In such cases optimal allocations are characterized by

an initial credit boom with high output followed by a permanent stagnation with low output. Moreover,

constrained-e¢ cient allocations are not implemented with �not-too-tight�solvency constraints, in contrast

to AJ and GMMW. Indeed, it is optimal to have slack participation constraints in all future periods by

restricting borrowing in order to lower future prices and relax the repayment constraint in the initial period.

Because the planner�s solution is time-inconsistent � the planner would like to renege on the stagnation and

create a new credit boom � we also solved the planner�s problem under various degrees of commitment.

If commitment is weak, the economy experiences rare but pronounced credit crunches. If commitment is

strong, then the economy experiences infrequent but large credit booms.
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Appendix: Proofs of propositions

Proof of Proposition 1. (1) Suppose that y� � ymax. Then, the outcome f(yt; `t)g1t=0 with yt = y� and

`t = v(yt) for all t is implementable, which is the �rst-best and hence is cea. Now, suppose that f(yt; `t)g1t=0

is a cea. Then, yt = y� for all t, and since equilibrium requires `t � v(yt) for all t, (2) implies that

�`t �
+1X
s=1

�s�[u(yt+s)� v(yt+s)] =
1

r
�[u(y�)� v(y�)];

and hence `t � `.

(2) Suppose that y� > ymax. We show that the optimal sequence that has yt = ymax and `t = v(yt) for

all t. Suppose, by contradiction, that there is another sequence fy0t; `0tg1t=0 satisfying (2) and (3) with a

strictly higher welfare. It then follows that y� � y0t > ymax for some t. Let t0 be the �rst t such that

u(y0t)�v(y0t) > u(ymax)�v(ymax). Now we show that for some t1 > t0, y0t1 > y
0
t0 . Suppose, by contradiction,

that y0t � y0t0 for all t > t0. We have the following inequality,

v(y0t0) � `
0
t0 � �

�1
+1X
s=1

�s�
�
u(y0t0+s)� `

0
t0+s

�
� ��1

+1X
s=1

�s�
�
u(y0t0)� v(y

0
t0)
�
;

where the �rst inequality follows from the seller�s participation constraint, (3), at t = t0, the second follows

from the buyer�s participation constraint, (2), and the third follows from u(y0t0+s) � `
0
t0+s � u(y0t0+s) �

v(y0t0+s) � u(y
0
t0)� v(y

0
t0) since u� v is increasing for y < y

� and `0t0+s � v(y
0
t0+s) for all s. Because y

max is

the maximal value of y0t0 that equalizes the left side and the right side of this series of inequalities, it follows

that y0t0 � y
max, a contradiction. So y� � y0t1 > y

0
t0 for some t1 (and we choose t1 > t0 to be the �rst index

for this to happen). By induction, we can then �nd a subsequence fy0tig that is strictly increasing and is

bounded from above. So there exists a limit ey = limi!1 y
0
ti > y

max. Hence, by monotonicity, we have for

all i,

rv(y0ti) � r`ti �
�[u(ey)� v(ey)]

�
;

and, by taking i to in�nity, we have

rv(ey) � �[u(ey)� v(ey)]
�

:

However, as explained above, this implies that ey � ymax, and this leads to a contradiction.
Proof of Proposition 3. First we prove that there is a unique solution to the Bellman equation. We

begin by showing that, for any ! 2 [0; �!], the set of elements (y; !0) 2 [0; y�] � [0; !] satisfying (9)-(11) is

nonempty and hence the maximization problem is well-de�ned. For all ! 2 [0; �!], de�ne y! � ŷ � y� as the
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unique solution to

! =
�

1� � [u(y!)� �(y!)]: (23)

As u(0) � �(0) = 0 and �
1�� [u(ŷ) � �(ŷ)] = !, such y! 2 [0; ŷ] exists by the Intermediate Value Theorem.

We claim that (y!; !0) satis�es (9)-(11) for any !0 2 [!; �!]. First (11) holds by construction. Moreover,

rearranging (23), we have

�! = ! � �[u(y!)� �(y!)]

which implies (10) for any !0 � !. Finally, by (23) and the fact that y � ŷ � ymax,

�(y!) � �
!

�
� �!

0

�

for any !0 � !.

Proof. We now show that the Bellman equation (8)-(11) has a unique solution. Let C[0; �!] be the

complete metric space of continuous functions over [0; �!] equipped with the sup norm. De�ne T : C[0; �!]!

C[0; �!] by

T (W )(!) = max
y;!0

f� [u(y)� v(y)] + �W (!0)g ;

subject to (9)-(11). Note that T (W ) 2 C[0; �!] by the Theorem of Maximum. The mapping T satis�es the

Blackwell su¢ cient condition (Lucas and Stokey, 1989, Theorem 3.3), and hence T is a contraction mapping,

which admits a unique �xed point by the Banach Fixed-Point Theorem. Hence, V is the unique solution to

the Bellman equation and is continuous.

Notice that by decreasing ! we increase the set of (y; !0) that satis�es (9)-(11), but without a¤ecting the

objective function. Hence, V is weakly decreasing.

Now we prove that V is weakly decreasing in !, assuming that � is convex. To show that V is concave, we

show that T preserves concavity. Let !0; !1 2 [0; �!] be given. Let (y0; !0) and (y1; !1) solves (9)-(11) for !0

and !1, respectively. let � 2 (0; 1) be given. Then,

T (W )(�!0 + (1� �)!1)

� � [u(�y0 + (1� �)y1)� v(�y0 + (1� �)y1)] + �W (�!00 + (1� �)!01)

� ��[u(y0)� v(y0)] + �(1� �)[u(y0)� v(y0)] + �[�W (!00) + (1� �)W (!00)]

= �T (W )(!0) + (1� �)T (W )(!1):

The �rst inequality follows from the fact that (�y0 + (1 � �)y1; �!00 + (1 � �)!01) also satis�es (9)-(11) for

! = �!0 + (1� �)!1 because � is convex. The second inequality follows from the concavity of u� v and the

assumed concavity of W .
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Proof of Proposition 4. The program that selects the best PBE is

max
fytg1t=0

+1X
t=0

�t� [u(yt)� �(yt)] (24)

s.t. ��(yt) � �
+1X
s=1

�s [u(yt+s)� �(yt+s)] (25)

yt � y� for all t = 0; 1; 2; ::: (26)

(1) Suppose that y� � ymax. In this case, the outcome fytg1t=0 with yt = y� for all t is implementable

and hence is the cea

(2) Suppose that y� > ymax but ymax � ŷ. We show that the outcome fytg1t=0 with yt = ymax for

all t is the optimum. Suppose, by contradiction, that there is another outcome fy0tg1t=0 satisfying (25) and

(26) with a strictly higher welfare. First we show that y0t � ŷ for all t. Suppose, by contradiction, that there

is a t such that y0t > ŷ. Then, because ŷ � ymax,

��(y0t) > ��(ŷ) �
1X
s=1

�s�[u(ŷ)� �(ŷ)] �
1X
s=1

�s�[u(y0t+s)� �(y0t+s)];

a contradiction to (25). Given that this alternative outcome can only lie in the range [0; ŷ] and hence the

trade surplus is increasing in the output, the rest of the arguments are exactly the same as those in the proof

of Proposition 1.

(3) Suppose that ŷ < ymax < y�. As mentioned, we can solve the planner�s problem by solving the

Bellman equation (8)-(11) and by choosing !0. Moreover, by Proposition 3, the value function V is unique,

and it is nonincreasing and concave. Hence, we may choose !0 = 0. After solving the Bellman equation

and the policy functions, denoted by !0(!t) and y(!t), the cea can then by computed by !t+1 = !0(!t),

yt = y(!t), and `t = �(yt).

The Lagrangian associated with the Bellman equation (8)-(11) is

L = � [u(y)� v(y)] + �V (!0) + �
�
�
!0

�
� �(y)

�
+� f� [u(y)� �(y)] + �!0 � !g ; (27)

where the Lagrange multipliers, � and �, are non-negative. In general V may not be di¤erentiable everywhere.

However, because V is concave, the following �rst-order conditions are still necessary and su¢ cient for (y; !0)

to be optimal (Clarke (1976), Theorems 1 and 2):

� [u0(y)� v0(y)]� ��0(y) + �� [u0(y)� �0(y)] = 0 (28)

�V 0+(!
0) + �

�

�
+ �� � 0 � �V 0�(!0) + �

�

�
+ ��; (29)
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where V 0+(!
0) = lim!#!0 V

0(!) and V 0�(!
0) = lim!"!0 V

0(!). Both V 0+(!
0) and V 0�(!

0) exist because of

concavity. The envelope condition, provided that V 0(!) exists, is

V 0(!) = ��: (30)

We de�ne two critical values for the buyer�s promised utility:

!max =
� [u(ymax)� �(ymax)]

1� � and �! =
�[u(ŷ)� �(ŷ)]

1� � :

The �rst threshold is the buyer�s life-time expected utility at the highest steady state, while the second is

the maximum life-time expected utility achieved by the buyers across all steady states. Note that by the

de�nition of ymax, �(ymax) = �!max=�.

(a) � � � [1� u0(ymax)=�0(ymax)] :

The following claim provides conditions under which the constrained-e¢ cient allocation corresponds to

the highest steady state. In order to establish this claim, we shows that, for ! = 0 and ! = !max, the

optimal solution to the maximization problem in (8)-(11) is (!max; ymax).

Claim 1 If ŷ < ymax < y� and � � � [1� u0(ymax)=�0(ymax)], then the unique solution to (8)-(11) is

V (!) =
� [u(ymax)� v(ymax)]

1� � if ! 2 [0; !max]; (31)

=
� fu[g(!)]� v[g(!)]g

1� � if ! 2 (!max; �!]; (32)

where g(!) is the unique solution to �[u(y)� �(y)] = (1� �)! for all ! 2 (!max; �!].

The function V given by (31)-(32) is �at in the interval [0; !max] and is strictly concave for all ! 2

(!max; �!), and hence is concave overall. To show the strict concavity, we compute V 00(!) for all ! 2 (!max; �!).

By the Implicit Function Theorem, we have

g0(!) =
1� �

�fu0[g(!)]� �0[g(!)]g < 0;

and hence

V 0(!) =
u0[g(!)]� v0[g(!)]
u0[g(!)]� �0[g(!)] (33)

for all ! 2 (!max; �!). Thus,

V 00(!) =
fu00[g(!)]� v00[g(!)]gfu0[g(!)]� �0[g(!)]g

fu0[g(!)]� �0[g(!)]g2 g0(!)

+
�fu0[g(!)]� v0[g(!)]gfu00[g(!)]� �00[g(!)]g

fu0[g(!)]� �0[g(!)]g2 g0(!) < 0:
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Note that, for all ! 2 (!max; �!), u0[g(!)] � �0[g(!)] < 0 as g(!) > ŷ and that u0[g(!)] � v0[g(!)] > 0 as

g(!) � ymax < y�.

To prove that V satis�es (31) and (32), we consider two cases.

(i) Suppose that ! 2 [0; !max]. The solution to the maximization problem in (8)-(11) is given by (!0; y) =

(!max; ymax). This solution is feasible because (!max; ymax) satis�es (10) for all ! � !max and it satis�es (9)

at equality. Next, we show that it satis�es (28)-(29) with � = 0 and

� =
�[u0(ymax)� v0(ymax)]

�0(ymax)
> 0:

The condition (28) holds by the de�nition of �. To establish (29), �rst note that V 0�(!
max) = 0 and

V 0+(!
max) � lim

!#!max
V 0(!) =

u0(ymax)� v0(ymax)
u0(ymax)� �0(ymax) :

Thus, V 0�(!
max) + �=� > 0 and the �rst inequality in (29) holds if and only if

V 0+(!
max) +

�

�

=
1

�

[u0(ymax)� v0(ymax)]
�0(ymax)

�
�+ �

�0(ymax)

u0(ymax)� �0(ymax)

�
� 0;

and, because ŷ < ymax < y� and hence u0(ymax) � v0(ymax) > 0 and u0(ymax) � �0(ymax) < 0, the last

inequality holds if and only if

�

�
u0(ymax)

�0(ymax)
� 1
�
� ��;

that is, � � � [1� u0(ymax)=�0(ymax)]. This implies V satis�es (31).

(ii) Suppose that ! 2 (!max; �!). Here we show that (!0; y) = (!; g(!)) is the solution to the maximization

problem in (8)-(11). This solution is feasible: (10) holds by construction; because !0 = ! = �[u(y) �

�(y)]=(1� �) and because y = g(!) � ymax,

��(y) � ��[u(y)� �(y)]=(1� �);

(9) holds. Next, we show that the FOC�s (28) and (29) are satis�ed by (!0; y) = (!; g(!)) with � = 0 and

� = �u
0[g(!)]� v0[g(!)]
u0[g(!)]� �0[g(!)] > 0:

The FOC for y, (28), holds by the de�nition of �. The FOC for !0, (29), holds if and only if

� + V 0(!) = 0;

which holds by (33). Thus, if !0 = ! 2 (!max; �!), then the optimal sequence is (!t; yt) = (!; g(!)) for all t.

Hence, V (!) is satis�es (32) for all ! 2 (!max; �!). Finally, V satis�es (32) at ! = �! by continuity.
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(b) � < � [1� u0(ymax)=�0(ymax)] :

We will show that V (!) has the same closed-form solution as derived in claim 1 when ! > !max. Given

this observation, we will establish that if ! = 0 then !0 > !max and y can be solved in closed form.

Claim 2 Suppose that ŷ < ymax < y� and � < � [1� u0(ymax)=�0(ymax)]. Then, there exists a unique

(y0; y1) with ŷ < y1 < ymax < y0 < y� that solves (14)-(15), and the unique V that solves (8)-(11) satis�es

V (!) = �[u(y0)� v(y0)] +
�

1� ��[u(y1)� v(y1)] if ! = 0; (34)

=
�

1� � fu[g(!)]� v[g(!)]g if ! 2 [!max; �!]; (35)

where g(!) is given in Part 1.

The fact that V satis�es (35) follows the proof of the second case in the claim in the proof of Part 1 and

the Contraction Mapping Theorem. Note that by (35), V 0(!) is given by (33) for ! > !max and hence the

proof there applies exactly.

Here we show (34). First we rewrite the problem in (8)-(11) at ! = 0 as follows:

max
y;!0

f� [u(y)� v(y)] + �V (!0)g (36)

s.t. � �(y) + �!
0

�
� 0 (37)

y 2 [0; y�]; !0 2 [0; �!] : (38)

Note that (10) is trivially satis�ed when ! = 0. Now, conjecturing that !0 � !max, we can replace V (!0) by

the expression given by (35), y by y0 and g(!0) by y1, and transform the above problem to

max
(y0;y1)2[0;y�]�[ŷ;ymax]

�
� [u(y0)� v(y0)] + �

u(y1)� v(y1)
r

�
(39)

s.t. ��(y0) + �
u(y1)� �(y1)

�r
� 0; (40)

which is exactly the same as (14)-(15). By the Kuhn-Tucker conditions, a pair (y0; y1) solves the above

problem if it satis�es the following FOC and feasibility condition:

u0(y0)� v0(y0)
�0(y0)

= ��
�

�
u0(y1)� v0(y1)
u0(y1)� �0(y1)

�
(41)

�[u(y1)� �(y1)] = r��(y0): (42)

In order to show that the solution (y0; y1) is also a solution to the problem in (8)-(11) at ! = 0 we only need

to verify our conjecture,

!1 =
1

1� ��[u(y1)� �(y1)] > !
max;
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because the necessary conditions, (41)-(42), are also su¢ cient by the concavity of V over its entire domain.

Now we show that there exists a unique pair (y0; y1) with ŷ < y1 < ymax < y0 < y� that satis�es

(41)-(42). For each y1 2 (ŷ; ymax], de�ne

h(y1) = �
�1
h �
r�
[u(y1)� �(y1)]

i
:

as the unique solution of y0 to (42) for a given y1. Note that h(ymax) = ymax. For any y1 2 (ŷ; ymax],

h0(y1) =
�

r�

[u0(y1)� �0(y1)]
�0[h(y1)]

< 0:

Substituting y0 by its expression given by h(y1) in the left side of (41), we rewrite (41) as H(y1) = 0 where

H(y1) =
u0[h(y1)]� v0[h(y1)]

�0[h(y1)]
+
�

�

�
u0(y1)� v0(y1)
u0(y1)� �0(y1)

�
:

The function H(y1) is continuous and strictly increasing in (ŷ; ymax] with

lim
y1#ŷ

H(y1) = �1;

and, at y1 = ymax, we have

H(ymax) =
u0(ymax)� v0(ymax)

�0(ymax)
+
�

�

�
u0(ymax)� v0(ymax)
u0(ymax)� �0(ymax)

�
= [u0(ymax)� v0(ymax)]

�
1

�0(ymax)
+
�

�

�
1

u0(ymax)� �0(ymax)

��
> 0

because � < � [1� u0(ymax)=�0(ymax)]. Thus, by Intermediate Value Theorem, there exists a unique y1 2

(ŷ; ymax) such thatH(y1) = 0 and hence (41) holds for (h(y1); y1), and h(y1) > ymax as h is strictly decreasing

with h(ymax) = ymax. This proves that there exists a unique pair (y0; y1) with ŷ < y1 < ymax < y0 < y� that

satis�es (41) and (42).

Finally, because ŷ < y1 < ymax < y0 < y� and because (!0; y) = (!1; y0) with !1 = �[u(y1)��(y1)]=(1��)

is the solution to the maximization problem in (8)-(11) for ! = 0, V satis�es (34).
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