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Abstract
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1 Introduction

Most businesses, especially small ones, rely on secure access to credit through stable relationships

with banks. According to the 2003 Survey of Small Business Finances, 65% of small businesses

that need funding had access to a credit line or revolving credit arrangement �a proxy for lending

relationships. These �rms hold 30% less cash relative to �rms not in a lending relationship, thereby

suggesting some degree of substitutability between internal �nance with cash and external �nance

through banking relationships. Insofar as monetary policy a¤ects the user cost of cash, these

observations suggest an asymmetric transmission of monetary policy to �rms depending on their

access to lending relationships.

Monetary policy transmission to relationship lending is especially critical in times of �nancial

crisis as a fraction of these relationships get destroyed due to bank failures, stricter application

of loan covenants, or tighter lending standards.1 During the Great Depression, the destruction

of lending relationships explained one-eighth of the economic contraction (Cohen, Hachem, and

Richardson, 2021). The goal of this paper is to understand the mechanism through which monetary

policy a¤ects the creation of lending relationships, �nancing of �rms, and the policymaker�s trade-

o¤s in times of crisis.

We develop a general equilibrium model of lending relationships and corporate �nance in the

tradition of the New Monetarist approach (surveyed in Lagos, Rocheteau, and Wright, 2017) and

use it to study optimal monetary policy, with and without commitment, in the aftermath of a

crisis. In the model economy, entrepreneurs receive idiosyncratic investment opportunities, as in

Kiyotaki and Moore (2005), which can be �nanced with bank credit or retained earnings in liquid

assets. The rate of return of liquid assets, and hence the interest rate spread between liquid and

illiquid assets, is controlled by the monetary authority. We assume the frequency of investment

opportunities that can be �nanced expands when a �rm enters a relationship with a bank. Hence,

external �nance through banks plays an essential role, even when the interest rate spread goes to

zero (which corresponds to the Friedman rule). The role of banks consists of issuing IOUs that are

acceptable means of payment (inside money) in exchange for the illiquid IOUs of the entrepreneurs

with whom they have a relationship. However, in the presence of search and information frictions,

1During the Great Recession, the number of small business loans contracted by a quarter from its peak (FFIEC
Call Reports; Chen, Hanson, and Stein, 2017), and distressed banks reneged on precommitted, formal lines of credit
(Huang, 2009).
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relationships take time to form and are costly to monitor.

The transmission of monetary policy operates through two distinct channels. There is a liquidity

channel where a fall in the rate of return of liquid assets raises the interest spread between liquid

and illiquid assets and decreases holdings of liquidity for all �rms. Consistent with the evidence

(see, e.g., Section 4.2), this e¤ect is asymmetric across �rms with di¤erent access to credit. Under

fairly general conditions, �rms in a lending relationship hold less liquid assets than unbanked �rms,

and this gap widens as the interest spread between liquid and illiquid assets increases. Banked

�rms respond more strongly to an increase in the user cost of liquid assets than unbanked �rms by

substituting away from internal to external �nance.

Second, there is a novel lending channel operating through the creation of relationships. An

increase in the interest spread between liquid and illiquid assets makes it more pro�table for a

�rm to be in a banking relationship. Indeed, relationship lending allows �rms to economize on

their holdings of liquid assets, and the associated cost saving increases as liquidity becomes more

expensive. Critically, since banks have some bargaining power, they can raise the revenue they

collect from �rms through higher interest payments or fees, which gives them an incentive to create

more relationships.

We put our model to work by investigating the economy�s response to a negative credit shock

described as an exogenous and unanticipated destruction of lending relationships starting from

steady state. Under a policy rule that keeps the supply of liquid assets constant, the interest

spread jumps up initially, thereby stimulating the creation of new relationships, before gradually

declining to its initial level. In contrast, if the supply of liquid assets is perfectly elastic, aggregate

liquidity increases while the rate of credit creation remains constant. In a calibrated version of the

model, the policy that consists of keeping the supply of liquidity constant generates a decline in

aggregate investment which is twice as large as the one obtained under a constant interest rate,

but the recovery in terms of lending relationships is faster.

We then turn to studying the optimal monetary policy response under di¤erent assumptions

regarding the commitment power of the policymaker. If the policymaker can commit, optimal

policy entails setting low spreads close to the zero lower bound at the outset of the crisis to

promote internal �nance by newly unbanked �rms. To maintain banks�incentives to participate in

the market for relationships despite low interest spreads, the policymaker uses "forward guidance"

by promising high spreads in the future. If the shock is su¢ ciently large, the time path of spreads
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is hump-shaped, i.e., spreads in the medium run overshoot their long run value.

If the policymaker cannot commit and sets the interest spread period by period, then the optimal

policy maintains banks� incentives to create lending relationships by raising spreads in the short

run since it cannot commit to raising them in the future. The larger the contraction, the higher the

policymaker raises spreads in response. We �nd the recovery is slower than under commitment; e.g.,

the half life of the transition path to steady state following a 60% contraction, absent commitment,

is 26 months in our calibrated example, compared with 23 months under the Ramsey policy. This

produces a welfare loss from lack of commitment ranging from 0.25% to 0.35% of consumption,

depending on the size of the shock.

Literature

There are four main approaches to the role of lending relationships: insurance in the presence

of uncertain investment projects (Berlin and Mester, 1999), monitoring in the presence of agency

problems (Holmstrom and Tirole, 1997), screening with hidden types (Agarwal and Hauswald,

2010), and dynamic learning under adverse selection (Sharpe, 1990; Hachem, 2011).2 We adopt

the insurance approach as the need for insurance in the presence of idiosyncratic shocks is what

generates both the demand for liquid assets (money) and the usefulness of banks, and it is this

role that is central to the monetary policy trade-o¤ we are focusing on. The screening of borrowers

is captured by search and matching frictions in the credit market (as in, e.g., Wasmer and Weil,

2004).3 The monitoring role of banks is captured by a real resource cost from providing loans and

is similar in spirit as Diamond (1984) and Holmstrom and Tirole (1997).

There is a small literature on monetary policy and relationship lending, e.g., Hachem (2011)

and Bolton, Freixas, Gambacorta, and Mistrulli (2016).4 Our model di¤ers from that literature

by emphasizing money demand by �rms and their choice between internal and external �nance,

endogenizing the creation of relationships through a frictional matching technology, and assuming

banks have bargaining power. In particular, the endogenous choice of �rms�money holdings is

2See von Thadden (2004) for a discussion of Sharpe (1990). See Elyasiani and Goldberg (2004) and references
therein for a survey of the corporate �nance literature on relationship lending.

3Modeling screening as a search process is conceptually distinct from modeling it as a mechanism design problem
under private information. Models that combine search and adverse selection include Inderst (2001) and Guerrieri,
Shimer, and Wright (2010). In the context of banking, Hachem (2021) distinguishes explicitly the matching of banks
with borrowers from the screening of borrowers�types where both activities require some e¤ort.

4Bolton and Freixas (2006) is a related paper that focuses on monetary policy and transaction lending. Boualam
(2017) models relationship lending with directed search and agency costs but does not have an endogenous demand
for liquid assets or monetary policy.
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key to explain the transmission mechanism of monetary policy and raises issues, such as the co-

essentiality of money and bank credit, that do not arise in traditional corporate �nance models.

This choice is related to the formalization of liquidity demand in Holmstrom and Tirole (2011,

Ch. 2), except we formalize repeated investment opportunities in an in�nite horizon rather than a

two-period model.

Our description of the credit market with search frictions is analogous to den Haan, Ramey,

and Watson (2003), Wasmer and Weil (2004), Petrosky-Nadeau and Wasmer (2017), and models of

OTC dealer markets by Du¢ e, Garleanu, and Pedersen (2005) and Lagos and Rocheteau (2009).

Drechsler, Savov, and Schnabl (2017) document empirically the importance of bank market power

for the transmission of monetary policy, but focus on the deposit market while our focus is on bank

lending. We view their approach as complementary to ours.5

Our model is a corporate �nance version of Lagos and Wright (2005) and its competitive version

by Rocheteau and Wright (2005). The closest paper is Rocheteau, Wright, and Zhang (2018)

which studies monetary policy transmission with transaction lenders when �rms are subject to

pledgeability constraints. Imhof, Monnet, and Zhang (2018) extend the model by introducing

limited commitment by banks and risky loans.6 Our formalization of banks is similar to the one in

Gu, Mattesini, Monnet, and Wright (2016) and references therein. Models of money and credit with

long-term relationships include Corbae and Ritter (2004) with indivisible money and Rocheteau

and Nosal (2017, Ch. 8) with divisible money. Our description of a crisis is analogous to the one

in Weill (2007) and Lagos, Rocheteau, and Weill (2011).

Our recursive formulation of the Ramsey problem is related to Chang (1998) and Aruoba and

Chugh (2010) in the context of the Lagos-Wright model. Our approach to the policy problem

without commitment is similar to Klein, Krusell, and Ríos-Rull (2008) and Martin (2011, 2013)

in a New Monetarist model where the government �nances the provision of a public good with

money, nominal bonds, and distortionary taxes. Unlike the usual perturbation method applying to

the steady state, we devise an algorithm based on contraction mappings to compute transitional

dynamics.

5Choi and Rocheteau (2021) formalize the bank deposit market following a similar methodology as in our paper
and show that it generates a deposits channel as documented in Drechsler, Savov, and Schnabl (2017).

6Here, a lending relationship is a commitment by the bank to provide �rms with conditional access to credit.
While in models building on Kehoe and Levine (1993) or Alvarez and Jermann (2000), limited commitment generates
an endogenous debt limit, in our model, it is costly enforcement that puts a limit on banks�willingness to lend. See
Raveendranathan (2020) for a model of revolving credit lines where a credit contract speci�es an interest rate and
credit limit.
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2 Environment

Time is indexed by t 2 N0. Each period is divided in three stages. In the �rst stage, a competitive

market for capital goods opens and investment opportunities arise. The second stage is a frictional

market where long-term lending relationships are formed. The last stage is a frictionless centralized

market where agents trade assets and consumption goods and settle debts. Figure 1 summarizes

the timing of a representative period.

There are two goods: a capital good, k, storable across stages but not across periods, and

a consumption good, c, taken as the numéraire. There are three types of agents: entrepreneurs

that need capital, suppliers that can produce capital, and banks that can �nance the acquisition

of capital as explained below. The population of entrepreneurs is normalized to one. Given CRS

for the production of capital goods (see below), the population size of suppliers is immaterial. The

population of active banks is endogenous and will be determined through free entry. All agents

have linear preferences, c� h, where c is consumption of numéraire, and h is labor. They discount

across periods according to � = 1=(1 + �), where � > 0.

In stage 1, entrepreneurs have probabilistic access to a technology that transforms k units of

capital goods into y(k) units of numéraire in stage 3. We assume y(k) is continuously di¤erentiable

with y0 > 0, y00 < 0, y0(0) = +1, and y0(+1) = 0. Production/investment opportunities are

i.i.d across time and entrepreneurs: they occur with probability �u for unbanked entrepreneurs and

�b � �u for banked entrepreneurs. In Section 6, we endogenize �b and �u as the outcome of a

costly search/screening for investment opportunities by entrepreneurs and banks and show that it

su¢ ces that those e¤orts are not perfect substitutes to generate �b > �u. Capital k is produced

by suppliers in stage 1 with a linear technology, k = h. Social e¢ ciency dictates k = k� where

y0(k�) = 1. Agents can also produce c using their labor in stage 3 with a linear technology, c = h.

Entrepreneurs lack commitment, have private trading histories, and do not interact repeatedly

with the same suppliers. As a result, suppliers do not accept IOUs issued by entrepreneurs who have

no consequences to fear from reneging. In contrast, banks have access to a commitment technology

that allows them to issue liabilities that are repaid in the last stage. Banks also have the technology

to enforce the repayment of entrepreneurs�IOUs.7 These technologies are operated at a cost  (l),

where l is both the liabilities (in terms of the numéraire) issued by the bank to be repaid in stage

7We endogenize bank commitment through reputation in the appendix of Rocheteau, Wright, and Zhang (2018).
The possibility of insolvent banks in a version of our model is studied by Imhof, Monnet, and Zhang (2018).
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3 and the principal on the entrepreneur�s loan. This cost is increasing and convex, i.e.,  0(l) > 0,

 00(l) > 0,  (0) =  0(0) = 0. It includes the costs to issue liabilities that are easily recognizable

and noncounterfeitable, costs associated with the commitment to repay l, and costs to monitor the

entrepreneurs�loans backing these liabilities. We de�ne l̄� argmax fy(l)� l�  (l)g � k� as the

natural limit on loan sizes imposed by monitoring costs.

To be eligible for external �nance, an entrepreneur must form a lending relationship with a bank.

Each bank manages at most one relationship.8 These relationships are formed in stage 2. At the

beginning of stage 2, banks without a lending relationship decide whether to participate in the credit

market at a disutility cost, � > 0: There is then a bilateral matching process between unbanked

entrepreneurs and unmatched banks. The number of new relationships formed in stage 2 of period

t is �t = �(�t), where �t is the ratio of unmatched banks to unbanked entrepreneurs, de�ned as

credit market tightness. We assume �(�) is increasing and concave, �(0) = 0, �0(0) = 1, �(1) = 1,

and �0(1) = 0. Since matches are formed at random, the probability an entrepreneur matches

with a bank is �t, and the probability a bank matches with an entrepreneur is �bt = �(�t)=�t. In

our context, search frictions can be interpreted as the time it takes to gather information about

�rms and to match heterogenous investment opportunities to banks with di¤erent expertise. We

denote the elasticity of the matching function �(�) � �0(�)�=�(�). A match existing for more than

one period is terminated at the end of the second stage with probability � 2 (0; 1). Newly formed

matches are not subject to the risk of termination.

In addition to banks�short-term liabilities, there are risk-free assets which are storable across

periods and promise a real rate of return from period t to t+1 equal to rt+1. We assume rt+1 is set

by the policymaker; e.g., the policymaker determines the supply of money or government bonds.9

If liquid assets take the form of �at money, then rt+1 is approximately equal to the opposite of the

in�ation rate and is implemented through changes in the money growth rate. If rt+1 = �, the cost of

holding liquid assets is zero, which is interpreted as the Friedman rule. In a large class of monetary

models, the Friedman rule allows agents to perfectly self-insure against idiosyncratic shocks, thereby

eliminating a role for credit or banks. When we turn to the optimal monetary policy, we make use

of the assumption �b > �u to maintain a role for banks even at the Friedman rule.10 In that case,

8This assumption is analogous to the Pissarides (2000) one-�rm-one-job assumption. One can think of actual
banks as a large collection of such relationships.

9 Implicitly, changes in government liabilities (i.e., money or bonds) are implemented with lump sum transfers or
taxes.
10We think of �b=�u as a generic wedge between self-insurance with liquid assets and insurance through a lending
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a fraction of investment opportunities cannot be �nanced without a relationship with a bank.

3 Liquidity and lending relationships

We study equilibria where investment opportunities are �nanced with bank loans and liquid assets

accumulated from retained earnings.

3.1 Value functions

Notations for value functions of entrepreneurs and banks in di¤erent states and di¤erent stages are

summarized in Figure 1. We characterize these value functions from stage 3 and move backward

to stage 1.

Unbanked entrepreneurs

Unmatched banks

Matched banks

Banked entrepreneurs

STAGE 1

Investment
STAGE 3

Production
and settlement

STAGE 2

Market for lending
relationships

)(ωe
tW

)(ωe
tX

)(mU e
t

)(ωe
tV

)(mZ e
t

b
tV

b
tS

Figure 1: Timing of a representative period and value functions

STAGE 3 (Settlement and portfolio choices). The lifetime expected utility of an unbanked

entrepreneur with wealth ! (expressed in terms of numéraire) in the last stage of period t is

W e
t (!) = max

ct;ht;mt+1�0

�
ct � ht + �U et+1(mt+1)

	
s.t. mt+1 = (1 + rt+1) (! + ht � ct) ;

where U et (m) is the value function of an unbanked entrepreneur at the beginning (stage 1) of period

t with liquid wealth m. The entrepreneur saves ! + ht � ct from his current wealth and income

in the form of liquid assets. The rate of return on liquid assets is rt+1, hence, holdings in period

relationship. Our leading interpretation is that banks, through their monitoring activities, can generate information
about pro�table investment opportunities for their customers. We formalize this idea in Section 6. There are
alternative reasons discussed in the literature for why entrepreneurs cannot perfectly self insure. For instance, liquid
assets might not be perfectly acceptable by suppliers, as in Lester, Postlewaite, and Wright (2012). They might be
subject to theft or embezzlement, as in Sanches and Williamson (2010), or can be diverted away from investment as
in Holmstrom and Tirole (2011, Ch. 2).
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t + 1 are mt+1 = (1 + rt+1) (! + ht � ct). Substituting ct � ht from the budget identity into the

objective, the Bellman equation becomes

W e
t (!) = ! + max

mt+1�0

�
� mt+1

1 + rt+1
+ �U et+1(mt+1)

�
: (1)

As is standard in models with risk-neutral agents, value functions are linear in wealth, and the choice

of mt+1 is independent of !. By a similar reasoning, the lifetime utility of a banked entrepreneur

with wealth ! in the last stage of period t, Xe
t (!), solves

Xe
t (!) = ! �

mb
t+1

1 + rt+1
+ �Zet+1(m

b
t+1); (2)

where Zet (m) is the value of a banked entrepreneur at the beginning of period t with m units of

liquid assets, and mb
t+1 is the amount of liquid assets that the banked entrepreneur must hold as

speci�ed by the lending-relationship contract.

STAGE 2 (Market for lending relationships). The lifetime expected utility of an unbanked

entrepreneur at the beginning of the second stage solves

V e
t (!) = �tX

e
t (!) + (1� �t)W e

t (!) = ! + �tX
e
t (0) + (1� �t)W e

t (0): (3)

With probability �t, the unmatched entrepreneur enters a lending relationship and, with probability

1� �t, he proceeds to the last stage unmatched. From the right side of (3), V e
t (!) is linear in !.

The lifetime discounted pro�ts of a bank entering at time t, V b
t , solve

V b
t = �� + �bt�Sbt+1 +

�
1� �bt

�
�max

n
V b
t+1; 0

o
: (4)

From (4), an unmatched bank incurs a cost � at the start of the second stage to participate in

the credit market; there, the bank is matched with an entrepreneur with probability �bt = �(�t)=�t

and remains unmatched with probability 1� �bt . The discounted sum of the pro�ts from a lending

relationship is Sbt+1.

STAGE 1 (Investment opportunities). In the �rst stage, suppliers choose the amount of k

to produce at a linear cost taking its price in terms of numéraire, qt, as given. Formally, they solve

maxk�0 f�k + qtkg. If the capital market is active, qt = 1. The lifetime utility of an unbanked

entrepreneur at the beginning of period t is

U et (mt) = E [V e
t (!t)] s.t. !t = mt + �

u
t max
kt�mt

[y(kt)� kt] ; (5)
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where �ut is a Bernoulli variable equal to one with probability �
u if the entrepreneur receives an

investment opportunity. The entrepreneur�s wealth when entering the second stage, !t, consists of

his initial wealth, mt, and pro�ts from the investment opportunity if �ut = 1. To maximize pro�ts,

the entrepreneur chooses kt subject to the liquidity constraint kt � mt. By the linearity of V e
t (!t),

(5) reduces to

U et (mt) = �u max
kt�mt

[y(kt)� kt] +mt + V
e
t (0): (6)

The lifetime expected utility of a banked entrepreneur with m liquid assets at the beginning of

stage 1 solves

Zet (m) = E [�W e
t (!t) + (1� �)Xe

t (!t)] s.t. !t = m+ �bt

h
y(kbt )� kbt

i
� �t, (7)

where kbt is the investment level, and �t is an intermediation fee due in stage 3. The indicator vari-

able, �bt , equals one if the banked entrepreneur receives an investment opportunity with probability

�b. The quantities, (kbt ; �t), are determined as part of an optimal contract. Using the linearity of

W e
t (!t) and X

e
t (!t),

Zet (m) = E [!t] + �W e
t (0) + (1� �)Xe

t (0); (8)

where the entrepreneur�s expected wealth at the end of a period is

E [!t] = m� �t + �b
h
y(kbt )� kbt

i
:

From (8), the lending relationship is destroyed with probability �, in which case the entrepreneur�s

value in the last stage is W e
t . Otherwise, the continuation value is X

e
t .

Finally, the discounted sum of bank pro�ts from a lending relationship at the start of period t,

Sbt , solves

Sbt = �t � �b 
�
kbt �mb

t

�
+ �(1� �)Sbt+1; (9)

where mb
t is the holdings of liquid assets of the entrepreneur matched with the bank to be used as

down payment for a loan. The second term on the right side is the cost of the loan lt = kbt �mb
t .

3.2 Optimal liquidity of unbanked entrepreneurs

We now determine the optimal holdings of liquid assets by unbanked entrepreneurs. Substituting

U et (mt) from (6) into (1), an unbanked entrepreneur�s choice of liquid assets is a solution to

�ut = �u (st) � max
mt�0

�
�stmt + �

u max
kt�mt

[y(kt)� kt]
�
; (10)
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where the interest rate spread between liquid and illiquid asset is

st �
�� rt
1 + rt

: (11)

If the liquid asset does not bear interest (e.g., cash), then s is the nominal rate on an illiquid bond,

and its lower bound is zero.11 The FOC associated with (10) is

st = �u
�
y0(mu

t )� 1
�
; (12)

where mu
t denotes the demand for liquid assets by unbanked entrepreneurs. The term on the left

side is the cost of holding liquid assets, whereas the right side is the expected marginal bene�t from

holding an additional unit of the liquid asset, which is the probability of an investment opportunity

times the marginal pro�ts from an additional unit of capital. The optimal liquid wealth of an

unbanked entrepreneur decreases with st but increases with �u.

3.3 Optimal lending relationship contract

The lending relationship contract negotiated in stage 2 of period t � 1 between newly matched

entrepreneurs and banks is a list, f�t+� ; kbt+� ;mb
t+�g1�=0, where �t+� is the fee to the bank, kbt+�

is the investment level, and mb
t+� is the amount of liquid wealth to be used as down payment on

loans. So, the loan size is lt+� = kbt+� �mb
t+� .

The entrepreneur�s surplus from being in a lending relationship in the third stage of t � 1 is

de�ned as Set =
�
Xe
t�1(0)�W e

t�1(0)
�
=�. The bank�s surplus is Sbt . The terms of the lending

relationship contract are chosen to maximize the generalized Nash product,
�
Sbt
��
(Set )

1��, where �

is the bargaining power of banks. As is standard in bargaining problems with transferable utilities,

fkbt+� ;mb
t+�g1�=0 is chosen to maximize the total surplus of a lending relationship, St = Set + Sbt ,

while f�t+�g1�=0 splits the surplus according to each party�s bargaining power. In the proof of

Proposition 1, we show the total surplus of a relationship solves

St = �b
h
y(kbt )� kbt �  (kbt �mb

t)
i
� stmb

t � �t + (1� �)�St+1; (13)

where

�t = �ut + V
e
t (0)�W e

t (0) (14)

represents the opportunity cost of being in a lending relationship and is composed of the expected

pro�ts of an unbanked entrepreneur (net of the cost of holding liquid wealth), �ut , augmented with
11This expression for the cost of holding liquid assets as a spread is consistent with the construction in Barnett

(1980).
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the value of the matching opportunities in the credit market, V e
t (0)�W e

t (0). The �rst term on the

right side of (13) corresponds to the pro�ts of an investment opportunity �nanced both internally

with mb
t units of liquid wealth and externally with a loan of size lt = kbt �mb

t . The second term is

the entrepreneur�s cost of holding mb
t units of liquid wealth.

Proposition 1 (Optimal lending contract with internal �nance). The terms of the optimal

lending relationship contract solve

 0
�
kbt �mb

t

�
= y0(kbt )� 1 �

st

�b
, "=" if mb

t > 0; 8t. (15)

The intermediation fee is equal to

�t = �b (kbt �mb
t) + �

h
�b(st)� �u(st)

i
� (1� �)��t; (16)

where the joint expected pro�ts net of the cost of holding assets are

�b(st) = max
kb;mb�0

n
�b
h
y(kb)� kb �  (kb �mb)

i
� stmb

o
: (17)

The optimal contract is consistent with a pecking order where �rms fund investment projects

with internal �nance �rst and resort to external �nance last. Indeed, conditional on an entrepreneur

holding mb units of liquid assets, the optimal loan contract solves

$(mb) = max
kb;l

n
y(kb)� kb �  (l)

o
s.t. kb � l+mb. (18)

If mb � k�, the entrepreneur �nances all of the project internally, kb = k� and l= 0. If mb < k�,

the entrepreneur �nances mb units of capital internally and l units externally, where l is chosen to

equalize the net marginal return of capital, y0(kbt ) � 1, and the marginal cost of external �nance,

 0 (lt). Given $(mb), the optimal holdings of liquid assets of a banked entrepreneur solve

mb = arg max
mb�0

n
�b$(mb)� smb

o
: (19)

Using $0(mb) =  0(l), the �rst-order condition for the optimal holdings of liquid assets satis�es

(15). The inequality in (15) states that the marginal gain from �nancing investment internally,

�b 0
�
kbt �mb

t

�
, cannot be greater than the opportunity cost of holding liquid assets, st.

The intermediation fee in (16) consists of the average cost of monitoring loans, a fraction � of the

entrepreneur�s pro�ts from being in a lending relationship, net of a fraction 1�� of the bank�s entry

costs. It depends on st through the term ��(st) � �b(st)��u(st), where @��(st)=@st = mu
t �mb

t .
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The di¤erence in liquid wealth between unbanked and banked entrepreneurs provides a channel

through which policy can a¤ect bank pro�ts and their incentive to participate in the credit market.

For instance, if mu
t > mb

t , then an increase in st raises banks�pro�ts.

Since banks� only interest-earning assets are the loans provided to entrepreneurs, and their

liabilities do not bear interest, we identify the average net interest margin on a lending relationship

as

NIMt =
�t

�b
�
kbt �mb

t

� : (20)

The numerator is the fees paid by banked entrepreneurs, while the denominator is the sum of all

loans.

While from Proposition 1, the terms of the optimal lending relationship contract do not depend

directly on the survival probability of the relationship, captured by 1 � �, the joint surplus, St,

de�ned in (13) increases with 1 � �.12 Relationships are more valuable as they last longer. But

since relationships are costly to form, their expected duration matters in general equilibrium. This

e¤ect will be captured by the last term of (16) once we endogenize market tightness.

3.4 Creation of lending relationships

Free entry of banks in the market for relationship lending means V b
t+1 � 0, with equality if there is

entry.

Lemma 1 In any equilibrium where the market for relationship lending is active in all periods,

f�tg1t=0, solves
�t

�(�t)
=
����(st+1)

�
� �(1� �)�t+1 + �(1� �)

�t+1
�(�t+1)

: (21)

According to (21), monetary policy a¤ects the creation of lending relationships through the

term ��(st+1). If mu
t+1 > mb

t+1, e.g., if �
u = �b and st+1 > 0, then an increase in st+1 raises

��(st+1) by reducing the net pro�ts of unbanked entrepreneurs by more than the pro�ts of banked

entrepreneurs. This e¤ect worsens an entrepreneur�s status quo in the negotiation and raises �t.

As a result, bank pro�ts increase with st+1. If mu
t+1 < mb

t+1, the opposite is true and bank pro�ts

decrease with st+1.

The measure of lending relationships at the start of a period evolves according to

`t+1 = (1� �)`t + �t(1� `t): (22)
12We could obtain a direct e¤ect of 1� � on the terms of the lending relationship contract by changing the timing

of the destruction of relationships, e.g., by assuming that relationships are destroyed at the beginning of a period.
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The number of lending relationships at the beginning of t+1 equals the measure of lending relation-

ships at the beginning of t that have not been severed, (1� �)`t, plus newly created relationships,

�t(1� `t).

3.5 Equilibrium

An equilibrium with internal and external �nance is a bounded sequence, f�t; `t;mu
t ;m

b
t ; k

b
t ; �tg1t=0,

that solves (12), (15), (16), (21), and (22) for a given `0 > 0. In the following proposition we

characterize equilibria when banked and unbanked entrepreneurs receive investment opportunities

at the same frequency.

Proposition 2 (Equilibria with internal and external �nance). Suppose �u = �b = �. A

unique steady-state monetary equilibrium exists and features an active credit market if and only if

(�+ �) � < ���(s): (23)

Let k̂ > 0 denote the solution to y0(k̂) = 1 +  0
�
k̂
�
. There are two regimes.

1. Low spread regime: st � ŝ � � 0
�
k̂
�
. All entrepreneurs invest kt that solves (12). The

di¤erence in their asset holdings according to their banking status is

mu
t �mb

t =  0�1
�st
�

�
: (24)

In the neighborhood of s = 0, @mb=@s < @mu=@s < 0 and @�=@s = 0.

2. High spread regime: st > ŝ � � 0
�
k̂
�
. Banked entrepreneurs hold no assets, mb

t = 0, and

invest kbt = k̂.

Transmission of monetary policy. For all s > 0,

@�

@s
= �

�
mu �mb

�
�

�
(�+ �) [1� �(�)]

�(�)
+ 1� �

��1
> 0 :

Proposition 2 distinguishes two regimes. If the cost of holding assets is low, between zero and

ŝ, both banked and unbanked entrepreneurs invest the same amount. At one limit, when s = 0,

internal �nance is costless and all investment opportunities are �nanced internally, mu
t = mb

t =

kbt = k�. At the other limit, when s = ŝ, entrepreneurs invest k̂, which is �nanced internally by

unbanked entrepreneurs and externally by banked entrepreneurs. In between zero and ŝ, banked

entrepreneurs make a down payment, mb
t < kt, and take a bank loan to cover the rest of their

13



�nancing needs, while unbanked entrepreneurs cover all investment expenditures with their liquid

assets, mu
t = kt. From (21), credit market tightness is determined by

(�+ �)��

�(�)
= �l

�
NIM �  (l)

l

�
with NIMt =

�

�
st +

(1� �)[ (lt)� ��t=�]
lt

:

The creation of relationships by banks depends on the volume of loans, l, the NIM , and the unit

cost of external �nance,  (l)=l. The NIM is composed of two terms. The �rst term is proportional

to the interest rate spread. The second term is a function of monitoring and entry costs.

In the second regime, when the cost of holding assets is larger than ŝ, banked entrepreneurs do

not hold liquid wealth and resort to external �nance only. If external �nance is costless,  � 0,

then ŝ = 0 and only the second regime prevails. In that case, the equilibrium features mb
t = 0 for

all st > 0 and kbt = k̂ = k�, i.e., investment levels are socially e¢ cient. If external �nance is costly,

then kb > ku. We represent these two regimes in the left panel of Figure 2.

bu mm , bu mm ,

uu km = uu km =bm bm

*k *k

k k
bk bk

L
L L

bu λλ = bu λλ <

Figure 2: Holdings of liquid assets, loan sizes, and investment

We now turn to the case where �b > �u. There are still two regimes depending on whether

s is smaller or larger than ŝ = �b 0
�
k̂
�
. If s < ŝ, all entrepreneurs hold some liquidity, but the

relationship between mu �mb and s can be nonmonotone.

Proposition 3 (Money demands and banking status). Suppose the cost of external �nance

is  (l) =  0l
1+�=(1 + �) and �b > �u. If � < 1 or � = 1 and

�
�b � �u

�
=�u > �y00(k�)= 0, then

there exists 0 < s0 � s1 � ŝ such that for all s < s0, mb > mu and @�=@s < 0; for all s > s1,

mu > mb and @�=@s > 0.
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For sake of illustration, suppose the cost of external �nance is quadratic, � = 1, and  0 is

su¢ ciently large. When s is low (s < s0), it is optimal for banked entrepreneurs who receive more

frequent investment opportunities to accumulate more liquid assets than unbanked entrepreneurs.

In contrast, if s is large (s > s1), banked entrepreneurs can rely on bank credit to �nance investment,

and hence they hold less liquid assets than unbanked entrepreneurs. The crossing of the money

demands, mu (red curve) and mb (blue curve), is illustrated in the right panel of Figure 2. The

nonmonotonicity of mu �mb with respect to s creates a nonmonotone relationship between bank

entry and spreads. For low spreads, an increase in s reduces bank entry, whereas for high spreads

it raises bank entry.

In summary, our model delivers a transmission mechanism from the policy rate to investment

through two channels. There is an internal �nance channel whereby an increase in st reduces

entrepreneurs�holdings of liquid assets, which in turn reduces the share of total investment �nanced

internally. This e¤ect is asymmetric for banked and unbanked entrepreneurs and depends on the

elasticity of  (l) and the di¤erence between �b and �u. There is also an external �nance channel,

according to which an increase in s makes lending relationships more valuable when mu > mb,

which raises bank pro�ts when banks have market power and promotes loan creation.

4 Aftermath of a credit shock

We now study the dynamics of the economy following a credit supply shock under alternative

monetary policies. We assume fundamentals are such that mu > mb for all s 2 (0; ŝ), which is the

case, e.g., if �u = �b or �u < �b, and the elasticity of  0(l) is su¢ ciently large. The economy starts

at a steady state with `0 = `s and mb > 0. A banking crisis destroys a fraction of the lending

relationships, `+0 < `s. We illustrate the dynamics in a phase diagram for the continuous-time limit

of our model (see Appendix A2 for derivations).13

4.1 Interest or liquidity targeting vs. forward guidance

We consider simple policies that illustrate the central trade-o¤of the policymaker between providing

liquidity to unbanked entrepreneurs and promoting the creation of lending relationships.

13See Choi and Rocheteau (2020) for a detailed description of New Monetarist models in continuous time with
methods and applications.
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Interest rate targeting. The �rst policy consists of keeping the spread, st, constant over time

so as to maintain an elastic supply of liquidity. The steady state is a saddle point with a unique

saddle path, �t = �s for all t, leading to it, as illustrated by the left panel of Figure 3. For any `0,

the measure of relationships is given by

`t = `s + (`0 � `s) e�[�+�(�
s)]t;

where `s = �(�s)= [� + �(�s)]. The speed of recovery, � + �(�s), increases with the interest rate

spread, s. Aggregate liquidity is given by Mt = `tm
b + (1� `t)mu, i.e.,

Mt =Ms + (`s � `0) e�[�+�(�
s)]t(mu �mb);

where Ms = `smb + (1 � `s)mu. Hence, aggregate liquidity jumps upward as the credit shock

occurs and returns gradually to its steady-state value over time. Investment levels by banked and

unbanked �rms are una¤ected by the shock, kut = ku0 < kbt = kb0 , as illustrated in the bottom right

panel of Figure 3. If �u < �b, then aggregate investment falls since the measure of unbanked �rms

is higher relative to the steady state, and those �rms can only �nance a fraction of the investment

opportunities of banked �rms. If �u = �b, then aggregate investment is una¤ected because external

�nancing crowds out internal �nancing one for one, by a similar logic as in Gu, Mattesini, and

Wright (2016).

Aggregate liquidity targeting. Suppose next that aggregate liquidity, Mt, is held constant.

Sincemu andmb are decreasing in s andmu > mb, the market-clearing spread, s(`;M), is decreasing

in both ` andM for all ` andM< k� and s(`;M) = 0 for allM> k�. The �-isocline is now downward

sloping in (`; �)-space when M< k� and is horizontal if M> k�. Intuitively, as ` increases, the

aggregate demand for liquid assets decreases, and hence s decreases, which reduces the pro�tability

of banks and bank entry. The steady state is a saddle point, and the saddle path is downward

sloping if M< k�, as illustrated by the top right panel of Figure 3.

If M< k�, the interest rate spread and credit market tightness increase at the time of the credit

crunch. As the economy recovers, both � and s decrease and gradually return to their steady-state

values. Investment by banked and unbanked �rms drops initially, since s is higher, but recovers

afterward. As a result, keeping M constant speeds up the formation of lending relationships (see

bottom left panel of Figure 3) but does not accommodate the higher demand for liquidity created

by the larger fraction of unbanked entrepreneurs, thereby reducing individual investment.
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Figure 3: Transitional dynamics: phase diagram with constant s (top left), constantM (top middle),
and forward guidance (top right); dynamics of lending relationships (bottom left) and investment
(bottom right)

Forward guidance. The policymaker faces a trade-o¤ between providing liquidity to unbanked

entrepreneurs by keeping spreads low and giving incentives to banks to re-enter and rebuild relation-

ships by raising spreads. In order to address both objectives, the policymaker can take advantage

of banks�dynamic incentives by setting a low interest spread initially, s(t) = sL for all t < T , to

allow unbanked entrepreneurs to self-insure at low cost, and by committing to raise the interest

spread at some future date T , i.e., s(t) = sH > sL for all t > T . We illustrate this policy in the top

right panel of Figure 3. The low-spread regime corresponds to a low �-isocline (� = �L), and the

high-spread regime corresponds to a high �-isocline (� = �H). The arrows of motion characterize

the dynamic system when t < T . The equilibrium path can be obtained by moving backward in

time.14 For all t > T , the economy is on the horizontal saddle path corresponding to s = sH ,

i.e., �t = �H . The path for the economy is continuous at t = T , i.e., �T� = �H , and it reaches

the �H -saddle path below. Finally, the trajectory of the economy starts at `0 with �0 > �L. Over

the time interval (0; T ), market tightness rises until it reaches �H at time T . Aggregate liquidity

14Choi and Rocheteau (2020) describe the methodology to solve for equilibria of a continuous-time New Monetarist
model with policy announcements.
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increases initially due to high demand and low spreads, decreases gradually as `t increases, and

jumps downward when the spread is raised.

4.2 Calibration

We calibrate the model to match moments on U.S. small businesses and their banking relationships

from the 2003 National Survey of Small Business Finances (SSBF). We take the period length as

a month and set � = (1:04)
1
12 � 1 = 0:0033. We adopt the following functional forms: � (�) =

��=(1 + �), where � 2 [0; 1], y (k) = ka=a with a = 0:3, and  (l) = (Bl)1+�=(1 + �), where � > 1.

The parameters to calibrate are then (��; �; �; B; a; �u; �b; s; �; �).

Parameter Value Moment Data Model
Parameters Set Directly
Discount rate (annual %), � 4.00
Destruction rate, � 0:012 Avg. length of credit rel. (years) 7.20 7.20
Production curvature, a 0:30 Capital share 0.30 0.30

Parameters Set Jointly Moments used in optimization
Matching e¢ ciency, �� 0:465 Share of banked �rms 0.65 0.65
Productivity shock, unbanked, �u 0:029 Average 3 yr. rate of innovation 0.65 0.65
Productivity shock, banked, �b 0:034 E¤ect of relationship on innovation 1.17 1.17
External �nance - curvature, � 15:68 Elasticity of mu=mb to s 11.98 11.98
External �nance level, B 3:42 mu=mb 1.30 1.30
Bargaining power, � 0:084 Average NIM (%) 6.00 6.00
Bank entry cost, � 0:015 Optimal spread (% annual) 1.90 1.90

Table 1: Calibration summary: parameters and targets

We de�ne a credit relationship as an open or revolving line of credit with a bank. In the 2003

SSBF, 65% of small businesses actively looking for or using external funding report being in a

credit relationship with a bank, with an average duration of 86.44 months. We set �� = 0:47 and

� = 1=86:44 to generate ` = 0:65 and an average length of relationship of 86.44 months. We

interpret s as the user cost of holding an index of money-like assets, MSI-ALL, which includes

currency, deposit accounts, and institutional and retail money market funds.15 As our baseline,

we target the optimal long-run spread under commitment to equal the average real user cost of

MSI-ALL from 2002�2004 of 1.9%. This pins down the �xed cost of bank entry and gives � = 0:015.

We identify �rms�money demand in the data by using the cash-to-assets ratio for small businesses

15The user cost is the spread between the rate of return of the MSI-ALL index and a benchmark rate equal to the
maximum rate across short-term money market assets plus a liquidity premium of 100 basis points. See Anderson
and Jones (2011) for details on constructing the MSI-ALL series and the rate of return and FRED series OCALLP.
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from the 2003 SSBF. The user cost of cash is based on the Divisia monetary aggregate, MSI-

ALL, developed by Barnett (1980).16 We estimate money demand by banked and unbanked �rms,

controlling for various sources of �rm heterogeneity, by running the following regression:

log(mi;t) = �bDi;t + eu(1�Di;t)st + ebDi;tst +Xi;t �  + �i;t; (25)

where mi;t is cash-assets of �rm i in year t, st is the user cost of cash in year t (common across

�rms), Di;t 2 f0; 1g is an indicator that equals one if �rm i has access to a line of credit in year

t, Xi;t is a vector of controls, including a constant, that captures �rm i�s attributes and �nancial

characteristics in year t, and �i;t is an error term.17 In order to control for the selection bias

according to which cash-rich �rms do not need bank credit in the �rst place, we only focus on �rms

actively looking for or using bank credit. Firms in this sample completed the survey on di¤erent

dates from 2003 to 2005. Hence, we match each SSBF sample with the user cost on the completed

date. In the Supplementary Data Appendix, we document the de�nition of variables and report

summary statistics.

We obtain exp(��b) = 1:29, signi�cant at the 1% level. Hence, small businesses in the SSBF

who are not in a lending relationship hold approximately 30% more cash than banked �rms do,

controlling for monetary policy and various �rm characteristics. The user cost semi-elasticities

for the demand for liquid assets by unbanked and banked �rms are @ log(mu)=@s = �26:68 and

@ log(mb)=@s = �38:66. We report the remaining regression coe¢ cients in the Supplementary Data

Appendix.

We set (B, �) to target the percentage di¤erence in cash holdings of unbanked to banked �rms

of 30%, mu=mb = 1:3, and the semi-elasticity of liquidity demanded by unbanked relative to banked

�rms with respect to the user cost of @ log(mu)=@s� @ log(mb)=@s = 11:98. This implies � = 15:7

and B = 3:4. In steady state, the cost of internal �nance is  (kb �mb) = 0:0006, or 0.3% of the

amount of credit provided. Further, to reach the high-spread regime requires an annual spread

above ŝ = 70%, which never occurs in any of the numerical experiments considered.

We set �u and �b using estimates in the literature on the frequency of �rm innovation and the

16Cash is de�ned as �any immediately negotiable medium of exchange,�which includes certi�cates of deposit (CDs),
checks, demand deposits, money orders, and bank drafts. The user cost is the spread between the own rate of return
from holding the portfolio of MSI-ALL and a benchmark rate that equals 100 basis points plus the maximum of the
interest rate on short-term money market rates and the largest interest rate out of the components of MSI-ALL.
17Controls in the SSBF regressions include �rm industry, urban or rural, �rm size, �rm type, as well as productivity

related variables like ROA, growth, management, ownership, sales-assets ratio, owner�s years of experience, and
owner�s level of education.
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role of lending relationships. Studies have found that lending relationships generally increase the

rate of innovation for both products and operational processes, however, the estimates vary across

studies, geographies, and other �rm characteristics. These studies �nd that, on average, 65% of

�rms report conducting a product or process innovation across three years and that a lending

relationship increases the rate of innovation between 5% and 28%. We target the midpoint of this

range, �b=�u = 1:17, and set �u to hit the average rate of innovation. This implies �u = 0:029 and

�b = 0:034, or that unbanked and banked �rms receive investment opportunities on average every

2.8 and 2.4 years, respectively.18

Finally, we set banks�bargaining power, �, to target the average annual NIM on small business

loans. We use bank-level data from the FFIEC�s Call Reports to measure NIM on small business

loans. We de�ne small business loans as loans less than $1 million and focus on banks that make

more than half of their commercial and industrial (C&I) loans in amounts less than this cuto¤.19

The NIM for small business loans is measured as

NIMsb =
interest and fee income on C&I loans

total C&I loans| {z }
loan rate

� total interest expense
total assets| {z }
funding cost

:

The �rst term measures banks�return from business lending, while the second term represents

banks�cost of funds. Since we do not directly observe the loan rate of small businesses in Call

Reports, we proxy the small business loan rate by the �rst term. Note that most of the C&I

loans of these banks are small business loans. We �nd a small business NIM of 6%. Matching this

estimate gives � = 0:08.

In Appendix A7, we illustrate robustness to the key parameters of the model and moments

targeted in the calibration.

Economy�s response to a destruction of relationships. We consider di¤erent magnitudes

for the size of the shock: a contraction in ` of 10%, 35%, and 60%. In our calibrated economy, `

falls from a steady state of 0:65 to 0:59, 0:42, and 0:26, respectively. These shock sizes correspond

to di¤erent interpretations for the contraction in small business lending in the U.S. during the 2008

18Appendix A6 explains in detail how we map the empirical estimates in the literature to our model; Appendix A7
shows our results hold if we use the endpoints 5% and 28%.
19This de�nition of small business loans is widely used in the literature and regulations like the Community

Reinvestment Act. The �nding is similar if we focus on banks making more than 99% of their C&I loans less than
$1 million.
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banking crisis and recession.20

Figure 4: Dynamic response to a destruction of lending relationships: constant spread (solid) vs.
constant liquidity (dashed)

Figure 4 shows the dynamic response of the calibrated model under two �xed monetary policy

rules: the spread s remains constant over time (solid lines), and the aggregate supply of liquidity

M remains constant (dashed lines). Those dynamics are qualitatively similar to those in Figure 3.

Quantitatively, the policy that consists in keepingM constant generates a large decline in aggregate

investment (by about 15% under the large shock), which is more than twice as large as the one

obtained under a constant spread. The recovery in terms of lending relationships is slightly faster

under a constant M than under a constant s.

5 Optimal monetary policy

We now analyze the optimal monetary policy following a credit crisis that destroys a fraction of

lending relationships. In Appendix A1, we show any constrained-e¢ cient allocation has kut =

kbt = k�, lt = 0. It coincides with a decentralized equilibrium if the policymaker implements

the Friedman rule, st = 0, to achieve optimal investment levels, and the Hosios condition holds,

�(�t) = �, to guarantee an e¢ cient creation of lending relationships.21 In Appendix A1, we also

establish su¢ cient conditions under which the Friedman rule, st = 0 for all t, is suboptimal, i.e., if

20The contraction in lending relationships of 10% is in line with evidence from McCord and Prescott (2014) of a 14%
decline in the number of commercial banks from 2007 to 2013. The larger contractions of 35% and 60% correspond
roughly to the fall in the measure of small business loan originations of 40% reported in Chen, Hanson, and Stein
(2017) and the fall in the total number of U.S. corporate loans of 60% as reported in Ivashina and Scharfstein (2010).
21See Appendix A1 for a formal proof. For a related result, see Berentsen, Rocheteau, and Shi (2007).
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the di¤erence between �(�) and � is su¢ ciently large relative to 1=�.22

5.1 The Ramsey problem

Suppose the policymaker chooses an in�nite sequence of interest spreads to implement a decen-

tralized equilibrium that maximizes social welfare. The policy path, fstg1t=1, is announced before

the market for relationships opens in stage 2, and the policymaker commits to it. We write the

Ramsey problem recursively by treating credit market tightness in every period t � 1, �t, as a state

variable. The initial tightness, �0, is chosen to place the economy on the optimal path. Market

tightness, �t, is interpreted as a promise to banks that determines their future pro�ts. It must be

honored in period t + 1 by choosing st+1 and �t+1 consistent with the free entry condition, (21).

The recursive planner�s problem is

fW(`t; �t) = max
�t+12�(�t)

�
���t(1� `t) + �(1� `t+1)�u

�
y(mu

t+1)�mu
t+1

�
(26)

+�`t+1�
b
h
y
�
kbt+1

�
� kbt+1 �  (lt+1)

i
+ �fW(`t+1; �t+1)o ;

where �(�t) is the set of values for �t+1 consistent with (21) for some st+1 2 [0;+1). Given st+1,

the quantities mu
t+1, k

b
t+1, and lt+1 are obtained from (12) and (15).23 The policymaker�s problem

at the beginning of time is

W(`0) = max
�02
=[�;��]

fW(`0; �0); (27)

where � (respectively, ��) is the steady-state value of � if s = 0 (respectively, s =1).

Figure 5 illustrates the optimal policy response following a banking shock that destroys lending

relationships in the calibrated economy. The Ramsey solution lowers st at the onset of the crisis

and then raises it above its long-run value (forward guidance) before gradually decreasing it to the

stationary level. The hump-shaped path of the optimal spread (top left panel of Figure 5) causes

a similar hump-shaped response in credit market tightness (top middle panel). While low spreads

bene�t unbanked �rms by making internal �nance less costly, they dampen bank pro�ts and reduce

the incentive to create new relationships. The use of forward guidance mitigates the e¤ect of the

current spread on relationship creation because banks�lifetime pro�ts depend on the whole path of
22We do not allow the policymaker to make direct transfers to banks that participate in the credit market in order

to correct for ine¢ ciently low entry. Such transfers may not be feasible if the policymaker cannot distinguish between
active and inactive banks in the credit market (i.e., one could create a bank but not search actively in the credit
market).
23The existence and uniqueness of eW(`; �) is established in Appendix A1.
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Figure 5: Optimal policy response with commitment to a destruction of lending relationships

future spreads. For smaller shocks, initial spreads are lower for longer and only slightly rise above

their long-run level. However, for large shocks, spreads increase more rapidly and feature a more

pronounced hump-shaped response.

Low spreads induce all �rms to raise their holdings of liquid assets closer to the full insurance

level k� = 1 (bottom middle panel). Over time, the policymaker unwinds the initial expansion of

M, leading to a sharper decline in banked �rms�holdings relative to unbanked �rms. Initially, the

increase in liquidity counteracts the destruction of relationships causing aggregate investment to

either rise in the case of small shocks or fall in the case of large shocks (top right panel). Afterwards,

aggregate investment falls and reaches its lowest value after about 5 months. It recovers gradually

as it increases towards its long-run value.

The Ramsey solution studied in this section is not bound by any past promises at time t = 0,

i.e., it is free to select any equilibrium, in our context by choosing any �0. Woodford (1999, 2003)

proposed a timeless approach amending the Ramsey solution to discipline the initial choice of

equilibrium by taking into account past commitments. Since we start with an economy at the

steady state, we impose that �0 = �� where �� is credit market tightness at the steady state. We

show in Appendix A5 that the results are qualitatively similar, i.e., the Ramsey solution under a
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timeless approach features a hump-shaped path for the spread. The constraint on the initial credit

market tightness does impact the initial spread. For small shocks, s0 is set just below its long-run

value whereas for large shocks, s0 is close to zero. Also, a noticeable di¤erence is that aggregate

investment under the timeless approach always falls following a destruction of relationships.

5.2 Optimal policy without commitment

We now relax the assumption of commitment altogether and assume the policymaker sets st+1

in period t but cannot commit to fst0gt0>t+1. As in Klein, Krusell, and Ríos-Rull (2008), the

policymaker moves �rst by choosing st+1, and the private sector moves next by choosing �t+1,

mu
t+1, and m

b
t+1.

We restrict our attention to Markov-perfect equilibria. The policymaker�s strategy consists of

a spread st+1 at the beginning of stage 2 of period t as a function of the economy�s state, `t. From

(12), mu
t = y0�1 [1 + st=�

u], so the strategy of the policymaker can be represented bymu
t+1 = K (`t).

The strategy of banks to enter is expressed as �t = �(`t;m
u
t+1), where � is implicitly de�ned by

(21), i.e.,

�(`t;m
u
t+1)

�
�
�(`t;mu

t+1)
� = ����(mu

t+1)

�
� �(1� �)�(`t+1;mu

t+2) + �(1� �)
�(`t+1;m

u
t+2)

�
�
�(`t+1;mu

t+2)
� ; (28)

where `t+1 = (1� �)`t + �
�
�(`t;m

u
t+1)

�
(1� `t) and mu

t+2 = K (`t+1). When forming expectations

about �t+1, banks anticipate the policymaker in period t+1 will adhere to his policy rule, mu
t+2 =

K (`t+1), and hence �t+1 = � [`t+1;K (`t+1)]. In equilibrium, �t = �(`t;m
u
t+1) and m

u
t+1 = K (`t)

are best responses to each other.

Given �, we determine K (`t) recursively from

W(`t) = max
mu
t+12[0;k�]

�
��(1� `t)�

�
`t;m

u
t+1

�
+ �(1� `t+1)�u

�
y(mu

t+1)�mu
t+1

�
(29)

+�`t+1�
b
h
y
�
kbt+1

�
� kbt+1 �  (lt+1)

i
+�W (`t+1)g ; (30)

where kbt+1 and lt+1 can be expressed as functions of m
u
t+1. The entire transitional dynamics are

computed numerically by devising a two-dimensional iteration described in Appendix A4. Figure

6 illustrates the optimal policy response under the benchmark calibration.

The policymaker can no longer commit to raise future st to counteract the e¤ects of current st

on banks�lifetime expected pro�ts, as in the Ramsey problem. In the long run, it is optimal to set
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Figure 6: Optimal policy response without commitment to a destruction of lending relationships

spreads just above their lower bound of zero, which illustrates the bias of the policymaker toward

low spreads. After a shock to banking relationships, the policymaker raises spreads at the outset

of the credit crunch in order to rebuild relationships more quickly (top left panel of Figure 6). The

initial increase in spreads is commensurate with the size of the shock, increasing more for larger

shocks. As lending relationships recover, st is reduced gradually over time. Quantitatively, interest

spreads early on are larger than the ones from the Ramsey solution when the shock is large enough,

but future spreads are lower.

There are two e¤ects on aggregate liquidity at the onset of the crisis. The increase in spreads

lowers holdings of liquid assets for all �rms, thereby decreasing Mt. However, the fall in ` from

the credit shock increases Mt since mu > mb. Quantitatively, the second e¤ect tends to dominate

(bottom right panel), more so the larger the shock. In contrast to the Ramsey solution, aggregate

investment falls at the time of the shock and recovers gradually (top right panel).

In our calibrated example, the half life of the recovery following a 60% contraction is 23 months

under the Ramsey solution but 26 months under the no commitment policy. So, the inability to

commit slows down the recovery by 3 months. The welfare loss from the lack of commitment ranges
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from 0.25% to 0.35% of foregone output, depending on the size of the shock.24 These estimates are

in the same ball park as those in Klein, Krussell, and Ríos-Rull (2008) who study time consistent

capital income taxation and �nd that without commitment, steady-state consumption is about

0.5% lower relative to the commitment case.

6 Search for investment opportunities

We now endogenize �u and �b by assuming that both the entrepreneur and the bank exert some

e¤ort in stage 1, ef and eb, respectively, to search for and screen pro�t opportunities. The disutility

of e¤ort for both agents is �e. The probability of an investment opportunity, �(E), where the joint

e¤ective e¤ort, denoted E, is given by

E(ef ; eb) =
h
(ef )" + �(eb)"

i 1
"
; (31)

with " 2 (0; 1] and � 2 (0; 1). If we think of e as the e¤ort to screen a �ow of potential investment

opportunities, then �(E) is the �ow of projects that are identi�ed as pro�table.

The problem of an unbanked entrepreneur is generalized as follows:

�u (st) � max
mt�0;eft�0

�
�stmt � eft + �(e

f
t ) max

kt�mt

[y(kt)� kt]
�
: (32)

In addition to the cost of holding liquid assets, entrepreneurs now incur the cost of searching and

screening investment opportunities. From (31), eb = 0 implies Eu = ef , and the optimal search

e¤ort of unbanked entrepreneurs solves

1 = �0(Eut ) [y(k
u
t )� kut ] : (33)

The investment probability is �u = �(Eu), which decreases with st. By a similar reasoning (see

Appendix A3 for details), the joint search e¤ort in a relationship Eb is the solution to�
1 + �

1
1�"
� "�1

"
= �0

�
Ebt

� h
y(kbt )� kbt �  (kbt �mb

t)
i
; (34)

where the individual e¤orts are given by eb = �
1

1�" ef and ef =
�
1 + �

1
1�"
��1

"
Eb. The investment

probability is �b = �(Eb), which is also a function of st. The following proposition provides

microfoundations for the ranking of �b and �u at the Friedman rule.

24We measure the welfare cost of not implementing the Ramsey solution as 1 � Wp=WR, where WR is lifetime
discounted output under the Ramsey policy, and Wp is lifetime discounted output under the optimal policy with no
commitment. In Appendix A7, we report robustness checks on various parameters (e.g., �) and summarize how this
welfare cost is a¤ected.
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Proposition 4 (Search for investment opportunities at the Friedman rule). Suppose

s = 0. If " = 1, i.e., e¤orts are perfect substitutes, then �b = �u. If " 2 (0; 1), i.e., e¤orts are

imperfect substitutes, then �b > �u.

As long as the search e¤orts of entrepreneurs and banks are not perfect substitutes, the invest-

ment probability of a banked entrepreneur is larger than the one of an unbanked entrepreneur at

the Friedman rule, �b > �u. So, it su¢ ces to avoid the knife-edge case " = 1 to generate a wedge

between �b and �u.

We recalibrate our model to check the implications of endogenizing �b and �u for optimal

monetary policy. We adopt the following functional form, �(e) = minf
p
e; 1g. Since this give us

three free parameters but only two targets, �u = �(Eu) and �b = �(Eb), we simply set " = 0:5

and replace (�u; �b) with (; �) in our baseline calibration strategy. This implies the steady-state

probabilities of investment opportunities for banked and unbanked �rms match those from the

baseline calibration, or �(Eu) = 0:029 and �(Eb) = 0:034. The remaining parameters are reported

in Appendix A3.

Figure 7: Response of cash holdings (left), e¤ort (middle), and �b=�u (right) to s

The left and middle panels of Figure 7 illustrate the responses of cash holdings and search and

screening e¤orts to changes in st. Since the two choices are complements, both fall as st increases.

However, since the pro�t functions are �at close to the Friedman rule (st = 0), search ad screening

e¤orts are relatively inelastic to changes in st when st is close to zero. The right panel shows the

wedge, �b=�u, declines slightly as st increases away from the Friedman rule.

We show in Appendix A3 the optimal policy response to a destruction of lending relationships

is qualitatively similar to the one in the model with exogenous �. Quantitatively, under commit-
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ment, endogenizing investment opportunities leads to a more pronounced hump-shaped response in

spreads, peaking 0.9 percentage points higher, relative to our benchmark case with exogenous �u

and �b. Without commitment, the policymaker initially increases st by 0.1 percentage points more

compared to when � is �xed. In both cases, aggregate investment falls by more and takes longer

to recover when �b and �u are endogenous, though the di¤erences are small.

7 Conclusion

We argue in this paper that the formation of lending relationships is critical for small businesses to

�nance their investment opportunities. As the formation of these relationships can be in�uenced

by monetary policy, we developed a general equilibrium model of corporate �nance that formalizes

this transmission mechanism, building on recent theories of money demand under idiosyncratic risk

and �nancial intermediation in over-the-counter markets. We use our model to study the optimal

response of the monetary authority following a banking crisis described as an exogenous destruction

of a fraction of the existing lending relationships. We consider di¤erent assumptions regarding the

policymaker�s power to commit to setting a time path of interest spreads.

If the policymaker can commit over an in�nite time horizon, the optimal policy involves "forward

guidance": the interest spread is set close to its lower bound at the outset of the crisis and increases

over time as the economy recovers. It is this promise of high future spreads that provides banks

incentives to keep creating lending relationships, even in a low spread environment. However, such

promises are not time consistent. If the policymaker cannot commit more than one period ahead,

then the interest rate spread is persistently low, and the recession is more prolonged.

Our model of lending relationships and corporate �nance can be extended in several ways. For

instance, one could relax the assumption that banks can fully enforce repayment to study imperfect

pledgeability of �rms�returns and its relation with monetary policy (e.g., as in Rocheteau, Wright,

and Zhang, 2018). One could introduce banks� limited commitment and analyze the dynamic

contracting problem in the credit market (e.g., as in Bethune, Hu, and Rocheteau, 2017) or agency

problems between �rms and banks to capture additional bene�ts of lending relationships (e.g.,

Hachem, 2011; Boualam, 2017). It would be fruitful to develop a life-cycle version of our model

to explain �rms� cash accumulation patterns and their interaction with long-term credit lines.

Our model of relationship lending could also be applied in other institutional contexts, like the

interbank market (e.g., Brauning and Fecht, 2016). Last, but not least, while we focused on the
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lending channel of monetary policy when banks have market power, it would be useful to add an

imperfectly competitive market for bank deposits, as suggested by Drechsler, Savov, and Schnabl

(2017), in order to obtain a more complete description of the transmission mechanism of monetary

policy (e.g., Choi and Rocheteau, 2021).
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Appendix A1: Proofs of Propositions and Lemmas

Proof of Proposition 1. We �rst compute the surplus of being in a lending relationship for
entrepreneurs and banks. Recall from (1) and (2) that the lifetime expected utilities of banked and
unbanked entrepreneurs with wealth ! in the last stage of period t solve:

W e
t (!) = ! �

mu
t+1

1 + rt+1
+ �U et+1(m

u
t+1); (35)

Xe
t (!) = ! �

mb
t+1

1 + rt+1
+ �Zet+1(m

b
t+1): (36)

The surplus of a banked entrepreneur is de�ned as Set =
�
Xe
t�1(0)�W e

t�1(0)
�
=�. Substituting Zet

by its expression given by (8), i.e.,

Zet (m
b
t) = mb

t � �t + �b
h
y(kbt )� kbt

i
+ �W e

t (0) + (1� �)Xe
t (0);

into (36) and subtracting W e
t�1(0), we obtain:

�Set = �
n
�stmb

t � �t + �b
h
y(kbt )� kbt

io
+(1� �)� [Xe

t (0)�W e
t (0)] + �W

e
t (0)�W e

t�1(0): (37)

From (6), for all mu
t � k�,

U et (m
u
t ) = �u [y(mu

t )�mu
t ] +m

u
t + V

e
t (0);

which we substitute into (35) to express W e
t�1(0) as:

W e
t�1(0) = �f�stmu

t + �
u [y(mu

t )�mu
t ]g+ �V e

t (0):

Substituting W e
t�1(0) into (37) and dividing both sides by � we obtain:

Set = ��t � stmb
t + �

b
h
y(kbt )� kbt

i
(38)

� [�ut + V e
t (0)�W e

t (0)] + (1� �)�Set+1:

From (9), the surplus of the bank solves

Sbt = �t � �b 
�
kbt �mb

t

�
+ �(1� �)Sbt+1; (39)

where mb
t is the entrepreneur�s down payment on the loan and hence lt = kbt �mb

t is the loan size.
Summing (38) and (39), the total surplus of a lending relationship, St = Set + Sbt , solves

St = �stmb
t + �

b
h
y(kbt )� kbt �  

�
kbt �mb

t

�i
(40)

� [�ut + V e
t (0)�W e

t (0)] + (1� �)�St+1:

A lending relationship contract negotiated at time t� 1 is

fkbt+� ;mb
t+� ; �t+�g1�=0 2 argmax[Sbt ]�[Set ]1��: (41)
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Given the linearity of Set and Sbt in �t, a solution is such that fkbt+� ;mb
t+�g1�=0 2 argmax

�
Sbt + Set

	
and �t 2 argmax[Sbt ]�[Set ]1��. Maximizing St with respect to kbt and mb

t gives:

y0(kbt )� 1�  0
�
kbt �mb

t

�
= 0

�st + �b 0
�
kbt �mb

t

�
� 0, �=�if mb

t > 0:

The sequence of intermediation fees solves Sbt+� = �St+� for all � , where Sbt obeys (39). Using the
de�nition of �b(st) in (17) we can reexpress St as:

St = �b(st)� �u(st)� [V e
t (0)�W e

t (0)] + (1� �)�St+1: (42)

Solving for �t gives

�t = �b 
�
kbt �mb

t

�
+ �

h
�b(st)� �u(st)

i
� � [V e

t (0)�W e
t (0)] :

Using that from (3), V e
t (0) = �tX

e
t (0)+(1��t)W e

t (0), it follows that V
e
t (0)�W e

t (0) = �t [X
e
t (0)�W e

t (0)] =
��tSet+1. From the bargaining, Set+1 = (1 � �)Sbt+1=� and from the free-entry condition in (4),
Sbt+1 = ��t=(��t). Putting all this together, we obtain (16).

Proof of Lemma 1. From (3), V e
t (0) �W e

t (0) = �t�Set+1 = �t(1 � �)�St+1 where we used
the generalized Nash solution, i.e. Set+1 = (1� �)St+1. Substituting into (42) to obtain:

St = ��(st)� �t(1� �)�St+1 + (1� �)�St+1: (43)

The �rst two terms on the right side of (43), ��(st) � �t(1 � �)�St+1, represent the �ow surplus
from a lending relationship: it is the increase in the expected pro�ts of the entrepreneur from having
access to external �nance net of the entrepreneur�s outside option. From (4), assuming positive
entry in equilibrium, V b

t = V b
t+1 = 0 implies ��t = �t��St+1. Substituting St+1 = ��t= (���t) into

(43) gives (21).

Proof of Proposition 2. From (21) with �t = �t+1 = �, steady-state credit market tightness
is the unique solution to

(�+ �)
�

�(�)
+ (1� �)� =

�
�
�b (s)� �u (s)

�
�

: (44)

Using that the left side is increasing in � and lim�!0 �=�(�) = 1, (44) admits a positive solution if

(�+ �) � < �
h
�b (s)� �u (s)

i
:

By di¤erentiating (44) and using that �b0 (s) = �mb and �u0 (s) = �mu we obtain:

@�

@s
= �

�
mu �mb

�
�

�
(�+ �)

[1� �(�)]
�(�)

+ (1� �)
��1

: (45)

From (12) and (15), if �b = �u = �, then mu > mb for all s > 0. Hence, from the expression above,
@�=@s > 0 for all s > 0.
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Given �, closed-form solutions for (`;mu;mb; kb; �) are obtained recursively as follows:

` =
�(�)

� + �(�)
(46)

s

�
= y0(mu)� 1 (47)

mb = max
n
mu �  0�1

� s
�

�
; 0
o

(48)

kb = max
n
mu; k̂

o
(49)

� = � (kb �mb) + �
h
�b(s)� �u(s)

i
� (1� �)��; (50)

where k̂ has been de�ned as the solution to y0(k̂) = 1 +  0
�
k̂
�
. Equation (46) is obtained from

(22). Equation (47) corresponds to (12). Equation (48) corresponds to (15) where we used that
if mb > 0 then kb = ku = mu and hence  0

�
kb �mb

�
= s=�. By taking the inverse of  0,

mb = mu �  0�1 (s=�). If mb = 0, then y0(kb) � 1 =  0
�
kb
�
� s=� = y0(mu) � 1. It follows that

mu � kb �  0�1 (s=�) where kb = k̂. This gives (49). Finally, (50) is obtained from (16).
The low-spread regime corresponds to the case where the constraint mb � 0 does not bind.

Hence kb = ku = mu and mb = mu � 0�1 (s=�), which corresponds to (24). The condition mb � 0
for all s such that mu �  0�1 (s=�), i.e., y0�1 (1 + s=�) �  0�1 (s=�). The left side is decreasing
in s while the right side is increasing in s, so there is a threshold ŝ such that the inequality holds

for all s � ŝ. The threshold solves y0�1 (1 + ŝ=�) =  0�1 (ŝ=�), i.e., y0(k̂) � 1 =  0
�
k̂
�
= ŝ=�.

The high-spread regime corresponds to the case where the constraint mb � 0 binds, in which case
kb = k̂ and s > ŝ.

Finally, in the neighborhood of s = 0, from (47) and (48),mu = mb � k�. From (45), @�=@s � 0.
Di¤erentiating (47) and (48),

@mb

@s
=

1

�y00(k�)
� 1

� 00(0)
<
@mu

@s
=

1

�y00(k�)
< 0:

Proof of Proposition 3. From (12) and (15), mb and mu are continuous functions of s such
that mb = mu = k� when s = 0. If @

�
mb �mu

�
=@s > 0 when evaluated at s = 0+ then there

exists s0 > 0 such that mb > mu for all s < s0. By di¤erentiating the FOC (15),

@mb

@s
=

1

y00(kb)�b
� 1

 00(kb �mb)�b
:

Using that  00(kb �mb) =  0(k
b �mb)��1=�, in the neighborhood of s = 0+,

@mb

@s
=

8><>:
1

y00(k�)�b
1

y00(k�)�b
� 1

 0�
b

�1
if �

< 1
= 1
> 1:

The condition @mb=@s > @mu=@s = 1= [y00(k�)�u] holds if � < 1; it is equivalent to

�b � �u

�u
>
�y00(k�)
 0
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if � = 1; it does not hold if � > 1. Hence, if � < 1 or � = 1 and
�
�b � �u

�
=�u > �y00(k�)= 0,

then there exists s0 > 0 such that mb > mu for all s < s0. By the same reasoning as in the proof

of Proposition 2, for all s > ŝ � �b 0
�
k̂
�
, mb = 0 < mu. Hence, s1 � ŝ. The e¤ect of a change

in s on market tightness is obtained from (45) in the proof of Proposition 2, according to which
@�=@s � ��0(s) =

�
mu �mb

�
.

Proposition 5 (Implementing constrained e¢ cient allocations.) The equilibrium achieves
the constrained-e¢ cient allocation if and only if st = 0 and �(�t) = � for all t.

Proof of Proposition 5. We measure social welfare starting in stage 2 of period 0 as the dis-
counted sum of aggregate output �ows net of the costs associated with production, intermediation,
and bank entry: W(`0) =

P1
t=0 �

tWt where the period welfare is

Wt = ���t(1� `t) + �(1� `t+1)�u
�
y
�
kut+1

�
� kut+1

�
(51)

+�`t+1�
b
h
y(kbt+1)� kbt+1 �  (lt+1)

i
:

The �rst term on the right side of (51) represents banks�entry costs in the relationship lending
market; the second term represents the pro�ts of unbanked entrepreneurs; and the third term repre-
sents the pro�ts of banked entrepreneurs net of the costs of external �nance. The planner chooses�
�t; k

u
t+1; k

b
t+1; lt+1

	1
t=0

to maximize W(`0) subject to the constraint imposed by the matching
technology, �(�t).

From the maximization of (51) with respect to (kut+1; k
b
t+1; k̂

b
t+1;lt+1), any constrained-e¢ cient

allocations satisfy:

kut+1 = kbt+1 = k� (52)

lt+1 = 0: (53)

According to (52), the planner chooses the �rst-best level of investment, k�. In that case, from (53),
the loan size is zero. The comparison of the equilibrium conditions (12) and (15) with (52) shows
that a necessary condition for the implementation of a constrained-e¢ cient allocation is st+1 = 0
for all t.

Using (52), we write the planner�s problem recursively as

W(`t) = max
�t�0

f���t(1� `t) + �(1� `t+1)�u [y (k�)� k�] (54)

+�`t+1�
b [y(k�)� k�] + �W(`t+1)

o
;

where `t+1 = (1 � �)`t + �(�t)(1 � `t). Assuming an interior solution, the planner�s optimality
conditions are:

� = �0(�t)�!t (55)

!t =
�
�b � �u

�
[y(k�)� k�] + � f1� � � �(�t+1) [1� �(�t+1)]g!t+1; (56)

where !t = (1 + �) [W0(`t)� ��t] = [1� � � �(�t)]. From (21), in equilibrium the free-entry condi-
tion for banks when st+1 = 0 is

� =
�(�t)

�t
��St+1;
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where
St+1 =

�
�b � �u

�
[y(k�)� k�] + � [(1� �)� �(�t+1)(1� �)]St+2:

This equilibrium condition coincides with the planner�s optimality conditions, (55) and (56), if and
only if �(�t) = �.

Proposition 6 (Suboptimality of the Friedman rule.) Suppose �u < �b,  (l) =l1+�=(1 + �)
with � > 1, and

� <
�0(0)�

�
�b � �u

�
[y(k�)� k�]

�+ �
: (57)

It is optimal to deviate from st � 0 if

�(�)� �
1� �(�) >

�
(1� �)`0

�(�) (1� `0)
+ 1

�
1

�
; (58)

where � is steady-state credit market tightness at the Friedman rule.

Proof of Proposition 6. The economy starts with `0 lending relationships. We measure
social welfare in the second stage of t = 0, before banks make entry decisions and entrepreneurs

make portfolio decisions, by W0 =
1P
t=1

�tWt where

Wt = �(1 + �)�(1� `t�1)�t�1 + (1� `t)�u [y (kut )� kut ] (59)

+`t�
b
nh
y(kbt )� kbt �  

�
kbt �mb

t

�io
:

The �rst term on the RHS is the entry cost of banks in period t � 1 where (1 � `t�1)�t�1 is
the measure of banks entering. The following terms are the entrepreneurs�pro�ts net of banks�
monitoring costs in period t. (Relative to Proposition 5, Wt has been scaled up by (1 + �).)

We consider a small deviation of the interest rate spread from s1 = 0. For t � 2, st = 0. As a
result, for all t � 1, �t = � solution to

(�+ �)
�

�(�)
+ (1� �)� =

�
�
�b � �u

�
[y(k�)� k�]
�

(60)

where we used that �b (0) = �b [y(k�)� k�] and �u (0) = �u [y(k�)� k�]. From (57), � > 0. For all
t � 2, mu

t = mb
t = k�. From (22), the measure of lending relationships solves:

`1 = (1� �)`0 + �(�0)(1� `0) (61)

`t = `+ (`1 � `)[1� � � �(�)]t�1 for all t � 1; (62)

where we have used that `t is the solution to the following linear, �rst-order di¤erence equation,
`t+1 = (1��)`t+�(�)(1�`t), with initial condition `1. The long-run solution is ` = �(�)= [� + �(�)].

The welfare starting in the second stage of t = 1 is measured by W0
1 =

1P
t=2

�t�2W0
t where

W0
t = �(1 + �)�(1� `t�1)� + �u [y (k�)� k�] + `t(�b � �u) [y(k�)� k�] ;
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where we have used that �t�1 = � and mu
t = mb

t = k�. First, we rearrange the terms of the sum to
rewrite W0

1 as follows:

W0
1 = (1 + �)�`1� +

1P
t=2

�t�2 f�(1 + �)�� + �u [y (k�)� k�]g

+
1P
t=2

�t�2`t
n
�� +

�
�b � �u

�
[y(k�)� k�]

o
: (63)

The second term on the right side of (63) is equal to:

1P
t=2

�t�2 f�(1 + �)�� + �u [y (k�)� k�]g = �(1 + �)�� + �u [y (k�)� k�]
1� � : (64)

Using that
1P
t=2

�t�2`t =
1P
t=2

�t�2
�
`+ (`1 � `)[1� � � �(�)]t�1

	
=

`

1� � +
(`1 � `)[1� � � �(�)]
1� �[1� � � �(�)] ;

the third term on the right side of (63) is equal to:

1P
t=2

�t�2`t
n
�� +

�
�b � �u

�
[y(k�)� k�]

o
=n

�� +
�
�b � �u

�
[y(k�)� k�]

o� `

1� � +
(`1 � `)[1� � � �(�)]
1� �[1� � � �(�)]

�
: (65)

Substituting (64) and (65) into (63), and after some calculation:

W0
1 =

�(1� `)(1 + �)�� + �u [y (k�)� k�] + `
�
�b � �u

�
[y(k�)� k�]

1� �

+
(1 + �)�� + [1� � � �(�)]

�
�b � �u

�
[y(k�)� k�]

1� �[1� � � �(�)] (`1 � `): (66)

We are now in position to measure welfare from t = 0:

(1 + �)W0 = W1 + �W0
1

= �(1 + �)�(1� `0)�0 + (1� `1)�u [y (ku1 )� ku1 ]

+`1�
b
h
y(kb1)� kb1 �  

�
kb1 �mb

1

�i
+
�� + �[1� � � �(�)]

�
�b � �u

�
[y(k�)� k�]

1� �[1� � � �(�)] `1

�
�� + �[1� � � �(�)]

�
�b � �u

�
[y(k�)� k�]

1� �[1� � � �(�)] `

+
�(1� `)�� + ��u [y (k�)� k�] + �`

�
�b � �u

�
[y(k�)� k�]

1� � ; (67)

where we obtained the second equality by substituting W0
1 by its expression given by (66) and we

used (59) to obtain

W1 = �(1 + �)�(1� `0)�0 + (1� `1)�u [y (ku1 )� ku1 ]

+`1�
b
h
y(kb1)� kb1 �  

�
kb1 �mb

1

�i
:
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We di¤erentiate ~W0 = (1 + �)W0 given by (67) with respect to s1:

@ ~W0

@s1
=

@ ~W0

@�0

@�0
@s1

+ (1� `1)�u
�
y0 (ku1 )� 1

� @ku1
@s1

+`1�
b 0
�
kb1 �mb

1

� @mb
1

@s1
; (68)

where we used that @ ~W0=@k
u
1 = (1� `1)�u [y0 (ku1 )� 1], @ ~W0=@m

b
1 = `1�

b 0
�
kb1 �mb

1

�
. The deriv-

ative on the right side of (68) is equal to

(1� `0)�1
@ ~W0

@�0
= �(1 + �)� � �0(�0)�u [y (ku1 )� ku1 ]

+�0(�0)�
b
h
y(kb1)� kb1 �  

�
kb1 �mb

1

�i
+�0(�0)

�� + �[1� � � �(�)]
�
�b � �u

�
[y(k�)� k�]

1� �[1� � � �(�)] ;

where we used, from (61), @`1=@�0 = �0(�0)(1 � `0). From (21) credit market tightness at t = 0
solves:

�0
�(�0)

=
�� [��(s1)]

�
� �(1� �)� + �(1� �) �

�(�)
: (69)

By di¤erentiating (69) and using that @��(s1)=@s1 =
�
mu
1 �mb

1

�
, we obtain:

@�0
@s1

=
�(�0)

1� �(�0)
��(mu

1 �mb
1)

�
: (70)

Di¤erentiating (12) and (15) assuming mb
1 > 0,

@mu
1

@s1
=

1

�uy00(mu
1)

(71)

@mb
1

@s1
=

 00
�
kb1 �mb

1

�
� y00(kb1)

 00
�
kb1 �mb

1

�
�by00(kb1)

: (72)

Substituting (70), (71), and (72) into @W0=@s1 and rearranging, we obtain:

@ ~W0

@s1
=

@ ~W0

@�0

�(�0)

1� �(�0)
��(mu

1 �mb
1)

�

+(1� `1)
[y0 (ku1 )� 1]
y00(mu

1)

+`1 
0
�
kb1 �mb

1

�  00 �kb1 �mb
1

�
� y00(kb1)

 00
�
kb1 �mb

1

�
y00(kb1)

:

Dividing by
�
mu
1 �mb

1

�
and taking the limit as s1 approaches 0:

lim
s1!0

 
1�

mu
1 �mb

1

� @ ~W0

@s1

!
=

@ ~W0

@�0

�(�)

1� �(�)
��

�

+(1� `1)
�b 00(0)�

�b � �u
�
 00(0) + �uy00 (k�)

+`1
�u�

�b � �u
�
 00(0) + �uy00 (k�)

 00 (0)� y00(k�)
�(0)

: (73)
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In order to obtain the second term on the right side, we used that

y0 (ku1 )� 1�
mu
1 �mb

1

� = s1

�u
�
y0�1 (1 + s1=�

u)� y0�1
�
1 + s1=�

b
�
+  0�1(s1=�

b)
� :

Applying L�Hôpital�s Rule and multiplying by 1=y00(k�), the term on the right side approaches to

�b 00(0)�
�b � �u

�
 00(0) + �uy00 (k�)

:

In order to obtain the third term on the right side we used that

`1
kb1 �mb

1

mu
1 �mb

1

 0
�
kb1 �mb

1

��
kb1 �mb

1

�
 00
�
kb1 �mb

1

�  00 �kb1 �mb
1

�
� y00(kb1)

y00(kb1)
:

Moreover,
kb1 �mb

1

mu
1 �mb

1

=
 0�1(s1=�

b)

y0�1 (1 + s1=�
u)� y0�1

�
1 + s1=�

b
�
+  0�1(s1=�

b)
;

which, by L�Hôpital�s Rule, tends to

�uy00 (k�)�
�b � �u

�
 00(0) + �uy00 (k�)

:

Finally,

(1� `0)�1
@ ~W0

@�0

�����
s1=0

= �(1 + �)� + �0(�)
�
�b � �u

�
[y(k�)� k�] + ��

1� �[1� � � �(�)] : (74)

From the free-entry condition (69) when s1 = 0:

(1 + �)��

��(�)
=

�
�b � �u

�
[y(k�)� k�] + ��

1� �[1� � � �(�)] ; (75)

where we used that �0 = � and ��(0) =
�
�b � �u

�
[y(k�)� k�]. Substituting (75) into (74):

(1� `0)�1
@ ~W0

@�0

�����
s1=0

= (1 + �)�

�
�(�)� �

�

�
:

Substituting this expression into (73), s1 > 0 is optimal if:

(1� `0) [�(�)� �]
�(�)

1� �(�) + (1� `1)
�b 00(0)�

�b � �u
�
 00(0) + �uy00 (k�)

+`1
�u�

�b � �u
�
 00(0) + �uy00 (k�)

 00 (0)� y00(k�)
�(0)

> 0;

where, from (61), `1 = (1 � �)`0 + �(�)(1 � `0). Assume  (l) =l1+�=(1 + �) with � > 1. The
condition above can be rewritten as:

�(�)� � > 1� �(�)
�(�)

�
`1

1� `0
1

�

�
:

Plugging `1 by its expression we obtain (58).
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Proposition 7 (Ramsey problem.) The policymaker�s value function solves

W(`0) = max
�02
=[�;��]

fW(`0; �0); (76)

where fW is the unique solution in B([0; 1]� 
) to (26) where

� =

����
�

�
�b � �u

�
[y(k�)� k�] + �(1� �)� 1

1� � [1� � � ��(1� �)] (77)

�� =
�����b

h
y(k̂)� k̂ �  (k̂)

i
=� + �(1� �)� 1

1� � [1� � � ��(1� �)] : (78)

Proof of Proposition 7. First, we characterize the state space. Given the functional form
�(�) = ���=(1 + �) and the parametric condition � + ��(1 � �) < 1, the law of motion for market
tightness, (21), can be rewritten as

�t =
����

�
��(st+1) + � [1� � � ��(1� �)] �t+1 + �(1� �)� 1: (79)

We restrict the policymaker�s choice to bounded sequences f�tg that solve (79) given some initial
condition, �0. The set of values for market tightness, 
, is obtained as follows. We de�ne �� as

steady-state credit market tightness when s =1, in which case ��(+1) = �b
h
y(k̂)� k̂ �  (k̂)

i
.

From (79) it solves:

�� =
����

�
��(+1) + � [1� � � ��(1� �)] �� + �(1� �)� 1:

Solving for ��, we obtain (78), i.e.,

�� =
�����b

h
y(k̂)� k̂ �  (k̂)

i
=� + �(1� �)� 1

1� � [1� � � ��(1� �)] :

Suppose �t > �� for some t. From (79),

�t+1 � �� =
�t � �� � ���� f��(st+1)���(+1)g =�

� [1� � � ��(1� �)] :

For all st+1 2 [0;1), ��(st+1) � ��(1) � 0. Since � [1� � � ��(1� �)] 2 (0; 1), the sequence
f�t� ��g is increasing and unbounded, which is inconsistent with an equilibrium. Next, we de�ne �
as steady-state market tightness when s = 0, in which case ��(0) =

�
�b � �u

�
[y(k�)� k�]. From

(79), it solves:

� =
����

�
��(0) + � [1� � � ��(1� �)] � + �(1� �)� 1:

Solving for �, we obtain (77), i.e.,

� =
����

�
�b � �u

�
[y(k�)� k�] =� + �(1� �)� 1

1� � [1� � � ��(1� �)] :

Suppose �t 2 (0; �) for some t. With � > 0, from (79),

�t+1 � � =
�t � � � ���� f��(st+1)���(0)g =�

� [1� � � ��(1� �)] :
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For all st+1 2 [0;+1), ��(st+1) � ��(0) � 0. So �t becomes negative in �nite time, which is
inconsistent with an equilibrium. Finally, for all �t 2 [�; ��] there exists a �t+1 consistent with an
equilibrium, e.g., a steady-state path where �t+� = �t for all � > 1.

The feasibility condition �t+1 2 � (�t) is obtained from (79) by varying st+1 from 0 to +1, i.e.,

� (�t) =

"
�t � ����

�
�b � �u

�
[y(k�)� k�] =� � �(1� �) + 1

� [1� � � ��(1� �)] ; (80)

�t � �����b
h
y(k̂)� k̂ �  (k̂)

i
=� � �(1� �) + 1

� [1� � � ��(1� �)]

35 \ 
:
Given a �t+1 2 �(�t), the remaining choice variables of the planner are determined recursively
according to:

��(st+1) =
� f�t � � [1� � � ��(1� �)] �t+1 � �(1� �) + 1g

����
(81)

mu
t+1 = y0�1

�
1 +

st+1
�u

�
(82)

kbt+1 = max

�
y0�1

�
1 +

st+1

�b

�
; k̂

�
(83)

lt+1 =  0�1
h
y0(kbt+1)� 1

i
(84)

`t+1 = (1� �)`t +
���t
1 + �t

(1� `t): (85)

We now turn to the Bellman equation (26). For a given initial market tightness, �0, we can
apply the Principle of Optimality to show the value function of the planner, fW(`t; �t), solves the
Bellman equation (26). It is the �xed point of a mapping from B([0; 1] �

�
�; ��
�
) into itself. The

mapping in (26) is a contraction by Blackwell�s su¢ cient conditions (Theorem 3.3 in Stokey and
Lucas, 1989), and by the contraction mapping theorem (Theorem 3.2 in Stokey and Lucas 1989),
the �xed point exists and is unique. The correspondence � is continuous and the policymaker�s
period utility is also continuous. So fW(`; �) is continuous by the Contraction Mapping Theorem.
Given there is no initial value for � in the original sequence problem, (27), �0 2 
 is chosen to as
to maximize fW(`0; �0). Such a solution exists by the continuity of fW(`0; �0) and the compactness
of 
.
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Appendix A2: Continuous time limit

We now derive the continuous-time limit of our model (see Choi and Rocheteau 2020 for a detailed
presentation of New Monetarist models in continuous time). Let � denote the length of a period
of time, where � is assumed to be small. We rewrite all variables that have a time dimension as
being proportional to �. It includes the matching function, the separation rate, the rate of time
preference, and the real return on liquid assets.

The law of motion of the lending relationships is

`t+� = (1� ��)`t + �(�t)�(1� `t):

We subtract `t on both sides, divide by �, and take the limit as � goes to zero to obtain

_̀
t = �(�t)(1� `t)� �`t;

where _̀t = lim�!0 (`t+� � `t) =�.
The pro�ts of an unbanked entrepreneur are �ut� where

�ut = max
mt�0

�
�stmt + �

u max
kt�mt

[y(kt)� kt]
�
;

where the interest spread is

st� =
(�� rt)�
1 + rt�

:

Note that the pro�ts conditional on an investment opportunity, y(kt) � kt, is a stock that has no
time dimension. Taking the limit as � goes to zero,

st = �� rt:

The �rst-order condition gives
st = �u

�
y0(mu

t )� 1
�
:

The �ow pro�ts of banked entrepreneurs are una¤ected,

�b(st) = max
kb;mb�0

n
�b
h
y(kb)� kb �  (kb �mb)

i
� stmb

o
:

The �rst-order conditions are

 0
�
kbt �mb

t

�
= y0(kbt )� 1 �

st

�b
, "=" if mb

t > 0; 8t.

Finally, the free-entry condition for banks is

(1 + ��)
�t

�(�t)�
=
�
�
�b(st+�)� �u (st+�)

�
�

��
� (1� �)�t+� + (1� ��)

�t+�
�(�t+�)�

:

Notice the cost of bank entry is a �ow cost, and hence proportional to �. Rearranging, the equation
can be rewritten as:

1

�

�
�t

�(�t)
� �t+�
�(�t+�)

�
+ �

�t
�(�t)

+ �
�t+�

�(�t+�)
=
�
�
�b(st+�)� �u (st+�)

�
�

� (1� �)�t+�:

Taking the limit as � goes to zero,

�
�
1� �(�t)
�(�t)

�
_� + (�+ �)

�t
�(�t)

=
�
�
�b(st)� �u (st)

�
�

� (1� �)�t;
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where �(�) � ��0(�)=�(�). Rearranging, we obtain:

_�t =
�(�t)

1� �(�t)

(
(�+ �)

�t
�(�t)

+ (1� �)�t �
�
�
�b(st)� �u (st)

�
�

)
:

To summarize, the system of ODEs for the measure of lending relationships, credit market
tightness, and the market-clearing condition for liquid assets are

_̀
t = �(�t)(1� `t)� �`t (86)

_�t =
�(�t)

1� �(�t)

�
(�+ �)

�t
�(�t)

+ (1� �)�t �
���(st)

�

�
(87)

Mt = `tm
b (st) + (1� `t)mu (st) ; (88)

where mu (st) and mb (st) are the implicit solutions to (12) and (15) with st � �� rt, andMt is the
supply of liquid assets. An equilibrium is a time path, f`t; �t;Mt; stg, that solves (86)-(88) given
`0 and monetary policy formulated either as st or Mt.

If s is kept constant then the equilibrium can be solved recursively. The time path for �t is
obtained from (87). In the neighborhood of _�t = 0, @ _�t=@�t > 0. Hence, the unique solution leading
to the steady state is �t = �s for all t. Given �t and `0 we can solve for `t from (86). Given `t we
can solve for Mt from (88).

Suppose next thatMt is kept constant atM< k�. From (88) we can express the market clearing
spread as s(`;M). From the observation that mb(s) and mu (s) are decreasing functions of s, it
follows that s is decreasing in M. Under the assumption that mb(s) < mu (s), an increase in `
reduces the aggregate demand for liquid assets. In order to restore market clearing, the spread
must fall. Hence, s is decreasing in `. Substituting s(`;M) into (87) we can reduce an equilibrium
to a pair of time paths, (`t; �t), solution to a system of autonomous ODEs:

_̀
t = �(�t)(1� `t)� �`t (89)

_�t =
�(�t)

1� �(�t)

�
(�+ �)

�t
�(�t)

+ (1� �)�t �
��� [s(`;M)]

�

�
(90)

From (89) the `-isocline is upward-sloping while from (90) the �-isocline is downward-sloping. The
signs of the terms of the Jacobian matrix in the neighborhood of the steady state are:

J =

�
� +
+ +

�
:

It follows that det J < 0, i.e., the steady state is a saddle point and there is a unique saddle path
leading to it.
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Appendix A3: Search for investment opportunities

We now endogenize the probabilities of investment opportunities, �u and �b. We assume that both
the entrepreneur and the bank can exert some e¤ort in stage 1, ef and eb, respectively, to search for
pro�t opportunities. The disutility of e¤ort for both agents is �e. The probability of an investment
opportunity, �(E), is a function of the joint e¤ective e¤ort, denoted E, with �(0) = 0, �0 > 0,
�00 < 0, �0(0) = +1, �0(+1) = 0 and

E(ef ; eb) =
h
(ef )" + �(eb)"

i 1
"
; (91)

where " 2 (0; 1). The joint e¤ective e¤ort, E, combines the individual e¤orts of the entrepreneur
and the bank according to a CES technology. If " = 1 the e¤orts of the entrepreneurs and the
bank are perfect substitutes. Moreover, if � < 1, entrepreneurs are more e¢ cient at generating
pro�t opportunities than banks are. If " < 1 then the individual e¤orts are imperfect substitutes,
which means that there are investment opportunities that the bank can bring that could not be
brought by the entrepreneur alone. For instance, according to the FDIC Small Business Lending
Survey (2018, p.6), �small banks are regarded as having a comparative advantage in gathering and
using �soft�information� knowledge of both the local community and the small businesses within
it� which the bank has accumulated over multiple interactions, and which is hard to quantify or
transmit�. If � = 0, then only entrepreneurs contribute to the arrival of investment opportunities.
If � > 0 then banks contributes positively to the arrival of pro�t opportunities.

The problem of the unbanked entrepreneur becomes

�u (st) � max
mt�0;eft�0

�
�stmt � eft + �(e

f
t ) max

kt�mt

[y(kt)� kt]
�
: (92)

When the entrepreneur is unmatched, Eu = ef . The �rst-order condition with respect to eu gives

1 = �0(Eut ) [y(k
u
t )� kut ] : (93)

It can be checked that Eut and mt are complements and both decrease with st. The investment
probability is now endogenous, �u = �(Eu), and it decreases with st.

The joint pro�ts of a lending relationship solve

�b(st) = max
kb;mb;ef ;eb

n
�stmb � (eft + ebt) + �

h
E(eft ; e

b
t)
i h
y(kb)� kb �  (kb �mb)

io
: (94)

The bank and the entrepreneur coordinate their search e¤orts to maximize the joint pro�ts. The
�rst-order conditions with respect to eft and e

b
t are:

1

�

�
eb

E

�1�"
=

�
ef

E

�1�"
= �0 (E)

h
y(kb)� kb �  (kb �mb)

i
: (95)

After some manipulations, eb = �
1

1�" ef . The search e¤ort of the bank is proportional to the one
of the entrepreneur where the coe¢ cient of proportionality is �

1
1�" . Provided that � 2 (0; 1), it is

optimal for the bank to search for pro�t opportunities, but the bank�s e¤ort is less than the one of
the entrepreneur. Moreover, if � < 1 and " tends to 1, then eb approaches 0. The aggregate e¤ort

is equal to Eb =
�
1 + �

1
1�"
� 1
"
ef and Eb solves�

1 + �
1

1�"
� "�1

"
= �0

�
Eb
� h
y(kb)� kb �  (kb �mb)

i
: (96)

The investment probability is �b = �(Eb). We now obtain the following lemma regarding the
ranking of �b and �u at the Friedman rule.

45



Proposition 8 (Search for investment opportunities at the Friedman rule.) Suppose
s = 0. If " = 1 then �b = �u. If " 2 (0; 1) then �b > �u.

Proof. Consider �rst the case " = 1. The FOCs are:

�1
�
+ �0

�
Eb
� h
y(kb)� kb �  (kb �mb)

i
� 0, " = " if eb > 0

�1 + �0
�
Eb
� h
y(kb)� kb �  (kb �mb)

i
� 0, " = " if ef > 0:

If � < 1, it follows immediately that eb = 0 and ef > 0. When s = 0, kb = mb and the FOC
simpli�es to:

�1 + �0
�
Eb
�
[y(k�)� k�] = 0:

The comparison with (93) shows that Eu = Eb and �u = �b. Consider the case where " 2 (0; 1).
From (96), at the Friedman rule, s = 0, the joint search e¤ort in a relationship solves:

�0
�
Eb
�
=

�
1 + �

1
1�"
� "�1

"

y(k�)� k� :

From (93), the search e¤ort of an unbanked entrepreneur, Eu, solves

�0(Eu) =
1

y(k�)� k� :

For all � 2 (0; 1),
�
1 + �

1
1�"
� "�1

"
< 1. Hence, �0

�
Eb
�
< �0(Eu), which implies Eb > Eu and

�b � �
�
Eb
�
> �u � � (Eu).

According to Lemma 4, if the search e¤orts of the bank and the entrepreneur are perfect
substitutes, then �u and �b are equal at the Friedman rule. However, as long as those e¤orts are
not perfect substitutes, the investment probability of a banked entrepreneur is larger than the one
of an unbanked entrepreneur at the Friedman rule, �b > �u.

We now turn to the optimal monetary policy. We set " = 0:5 and �(e) = minf
p
e; 1g.

We calibrate (; �) such that the endogenous rate of investment opportunities for banked and
unbanked �rms matches the parameters from the baseline calibration in steady state, �(Eu) = �u

and �(Eb) = �b. This ensures we match the same moments as our baseline for the elasticity of
liquidity demand by unbanked �rms relative to the user cost and the impact of relationships on
investment opportunities. This procedure yields  = 0:16 and � = 0:41. We also recalibrate other
parameters (�; �; �; B; �) following the baseline strategy and report these in the following table.
The parameters remain little changed with the exception of entry costs, �, which fall in order to
compensate for the added costs of e¤ort.

Speci�cation � � � �� �u �b B � �

Baseline 0:0033 15:7 0:012 0:465 0:029 0:034 3:42 0:08 0:015
Endogenous � 0:0033 15:7 0:012 0:483 0:029 0:034 3:42 0:06 0:005

We measure social welfare from stage 2 of period t until stage 1 of period t+ 1 by

���t(1� `t) + �(1� `t+1)
�
�(eut+1)

�
y(mu

t+1)�mu
t+1

�
� eut+1

	
+�`t+1

n
�(Ebt+1)

h
y
�
kbt+1

�
� kbt+1 �  (lt+1)

i
� eft+1 � ebt+1

o
:
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So the search e¤orts enter directly into the welfare function. Figure 8 illustrates the optimal policy
response to a 60% destruction of lending relationships. The blue-solid lines reproduce the baseline
responses while the dashed-red lines illustrate the optimal policy when investment opportunities
are endogenous. The top-three panels how the optimal policy with commitment and the bottom
three show optimal policy without. When investment opportunities are endogenous the planner
understands that there is an additional margin when setting a path of spreads. Increasing spreads
reduces e¤ort and lowers investment opportunities for both banked and unbanked �rms. Also,
under our calibration, increasing spreads acts to reduce the relative bene�t of a lending relationship
(see Figure 7). We �nd that qualitatively these tradeo¤s leave the optimal policy unchanged.
Quantitatively, the policymaker sets spreads higher when investment opportunities are endogenous
compared to when they are exogenous (middle panels in 8).

Figure 8: Optimal policy responses with commitment (top three panels) and without commitment
(bottom three panels) under endgoenous �.
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Appendix A4. Numerical procedures for optimal policy problems

Optimal policy with commitment

We solve for social welfare ~W(`; �) and the optimal policy function �0 = g�(`; �) using value function
iteration on a discrete grid.

1. Discretize the state space into N` � [0; 1] and N� � 
, where the lower and upper limits of

 are given by solving for �t = �t+1 = � in 21 when s is either s = 0 or s!1.

2. De�ne the Bellman operator as T ~Wn given by the right-hand side of (29).

3. Set the initial guess of ~W0 given by a policy consistent with a constant spread, s, de�ned as
�0 in

� =
����

�
�� (s) + �(1� �)� 1 + � [1� � � ��(1� �)] �0:

4. Update ~Wn+1(`; �) = T ~Wn(`; �)

5. Repeat 4. until max`;�
 ~Wn+1(`; �)� ~Wn(`; �)

 < �. This sequence is Cauchy and converges

to the unique �xed point of T .

6. Set W (`0) = max�2
 ~W(`0; �).

Optimal policy without commitment

We solve for the optimal policy functions �(`;mu0) and K(`) using contraction mappings on a
discrete grid.

1. Discretize the state space into N` � [0; 1] and Nm � [0; k�], where y0�) = 1.

2. Set the initial guess of K0(`) under a policy consistent with a constant spread, s, or s =
�u [y(K(`))� 1].

3. Given Kn(`), for any n = 0; 1; 2; : : : , compute �n(`;mu0) by iterating over the functional equa-

tion T�;n�(`;mu0) given by the right-hand side of 28. Repeat untilmax`;mu0

�j+1(`;mu0)��j(`;mu0)
 <

�. This sequence is Cauchy and converges to the unique �xed point of T�;n, which is denoted
as �n(`;mu0).

4. Given T�;n from 3., update Kn+1(`) by solving the social welfare functionWn(`) using the func-
tional equation TW;nW(`) given by the right-hand side of 30. Repeat untilmax` kKj+1(`)�Kj(`)k <
�.

5. Check if kKn(`)�Kn+1(`)k < �. If true, stop. Else, set Kn = Kn+1 and return to 3.

48



Appendix A5: Ramsey problem under a timeless approach

Notice the Ramsey solution is not bound by any past promises at time t = 0, i.e., it is free to select
any equilibrium, in our context by choosing any �0. To see how this matters, suppose the size of
the credit shock approaches zero, i.e., the economy starts at its stationary solution. Letting the
policymaker reset its policy is not innocuous, as illustrated in Figure 9. The policymaker reduces
s1 even though there is no exogenous destruction of lending relationships, which paradoxically,
generates a small reduction in `.

Figure 9: Ramsey solution with reset at t = 0 with `0 = `�

Woodford (1999, 2003) proposed amending the Ramsey solution to discipline the initial choice
of equilibrium. We adopt a similar notion. The solution to the Bellman equation (26) gives
a policy function expressed as �t+1 = ��(`t; �t). Suppose the economy has an in�nite history.
Substituting �t = ��(`t�1; �t�1) and iterating, the policy choice at t can be expressed as a function
of the entire history of lending relationships, i.e., �t+1 = �1(`t; `t�1; `t�2; :::) or, equivalently,
st+1 = S1(`t; `t�1; `t�2; :::) where S1 is a time-invariant policy function that speci�es the spread
as a function of the entire history of lending relationships.

The Ramsey solution under a timeless approach sets �0 such that �0 = �1(`�1; `�2; `�3; :::). If
the economy was at a steady state, then `�1 = `�2 = `�3 = `� and �0 = �1(`�; `�; `�; :::) = ��.
Hence, �1 = ��(`0; ��) which determines s1 from the free-entry condition. In particular, if the size
of the shock is zero, `0 = `�, then �1 = ��(`�; ��) = �� and the economy remains at its stationary
solution.25 Figure 10 plots the optimal timeless policy outcomes (dashed lines) for di¤erent sizes
of the shock.

The Ramsey solution under a timeless approach features a hump-shaped path for the spread.
By restricting �0 to its steady-state value, the timeless approach impacts the initial spread set by
the policymaker. For small shocks, s0 is set close to its long-run value whereas for large shocks, s0
is close to zero.
25As mentioned to us by Edouard Challe, in the case of a one-o¤, unexpected shock, the timeless perspective does

not �t the description of a stationary, fully state-contingent policy plan where the policymaker has planned a long
time ago how it would react to any future shock.

49



Figure 10: Optimal policy: unrestricted commitment (solid) vs. timeless approach (dashed)

Appendix A6: Calibration details

To capture the impact of a lending relationship on �rm innovation, we rely on four empirical studies:
Herrera and Minetti (2007), Giannetti (2012), Drexler and Schoar (2014), and Cosci, Meliciani, and
Sabato (2016). Below provides a detailed description of how we map the empirical estimates in
each of these studies to the implied impact on the rate of investment opportunities, �b=�u in the
model.

Herrera and Minetti (2007) use a 2001 survey of Italian manufacturing �rms that gives detailed
information on �rm/bank relationships and innovation. They �nd that increasing the length of
a banking relationship by 12.5 years increases the probability of product innovation by 94% (an
increase of 0.251 relative to 0.267 using Tables 3, 5 and the discussion in the text) and increases
the probability of process innovation by 46% (0.204 relative to 0.442). Since we target a shorter
duration of lending relationships of 5.6 years, we scale these e¤ects by 5.6/12.5 to get an impact on
product innovations of 42% and process innovations of 20.6%. Given product innovation represents
38% of all innovation in the Italian sample (Table 1), gives a weighted e¤ect on innovation of 28%.

Giannetti (2012) also examines the Italian manufacturing �rm survey, but uses two waves from
2001 and 2004 to incorporate a panel dimension. Generally, they �nd a signi�cantly smaller impact
of relationship lending to innovation. Relevant for our model, they �nd that increasing the length
of a banking relationship by 8 years increases the probability of product innovation for small �rms
by 4% (see Table 8 and the discussion in Section 6.2). Scaling by our average relationship duration,
as above, implies an e¤ect of (5.6/8)*4% = 2.8%. Further, they �nd that increasing the number
of banks a �rm is in a relationship with by one, increases the probability of product innovation by
4.5% (Table 8). Together, these imply an e¤ect of 7.3%. We consider a rough estimate from this
study of 5%.

Cosci, Meliciani, and Sabato (2016) use the 2010 Community Innovation Survey of manufac-
turing �rms across European countries (Germany, Spain, France and Italy). They �nd that a
lending relationship (identi�ed by a question that asks if having a long-lasting relationship is the
most important factor in a �rm�s choice of their main bank) increases the probability of product
or process innovation by 6.4% (an e¤ect of 0.0415 relative to 0.65, Tables 5 and 1). They also �nd
that increasing the number of lenders by one increases the probability of innovation by 5.3% (an
e¤ect of 0.0344 relative to 0.65, Tables 5 and 1). Using both estimates implies an overall e¤ect of
11.7%. Using only the �rst e¤ect would give 6.4%. We consider the mid-point from this study of
9%.

Finally, Drexler and Schoar (2014) examine the impact of a lending relationship on the proba-
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bility of credit provision. Using transaction-level data from the major lender to small and medium-
sized businesses in Chile, Banco Estado, they �nd that when a �rm�s individual loan o¤er ex-
ogenously leaves the relationship that the probability the �rm is issued credit falls by 20% (or,
in reverse that a lending relationship would increase the probability of credit provision by 23%).
They �nd this e¤ect is predominately driven by credit applications and to a lesser extent by credit
approvals. While this study does not give an estimate of the e¤ect on innovation directly, we take
consider the probability of credit provision to be in line with the probability of innovation.

While these studies all vary in their identi�cation strategies, controls, etc., they all generally
�nd a positive impact of lending relationships. In our baseline calibration we take the mid-point
of these estimates of 17%, but stress that our results go through even when we consider the lower
end of the range of 5% and the higher end of the range of 28%.
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Appendix A7: Quantitative robustness

In the following, we discuss how optimal monetary policy depends on some key parameters of the
model. When applicable, we also report the sensitivity of the calibrated parameters to the empirical
moments. We �rst consider banks�bargaining power, that determines whether there is too much
or too little creation of relationships. In our benchmark calibration, � = 0:08. We report optimal
monetary policy when � 2 f0:04; 0:16g, double and half of our baseline. This corresponds to using
estimates of the net interest margin between 2% and 10%. Our next check considers robustness
with respect to the elasticity of the cost of external �nance. We take half of the baseline estimate
� = 8:0. This corresponds to increasing the targeted semi-elasticity of mu=mb to s from 11:98 to
18:44. Finally, we consider robustness with respect to the di¤erence in investment opportunities
between banked and unbanked �rms. As discussed in Section A6, we consider the min and max of
estimates in the literature on the impact of a lending relationship in �rm innovation of �b = 1:05�u

and �b = 1:28�u, respectively. In each case, we recalibrate �� to target a long-run level of lending
relationships of 65% and keep the other parameters of the model unchanged. All parameters are
reported in the table below.

Figure 11: Robustness of optimal policy with commitment (top) and without commitment (bottom)

Figure 11 plots the optimal policy outcomes following a 60% destruction of relationships under
commitment (top panels) and without commitment (bottom panels). The main takeaway is that
the qualitative features of our baseline example are robust. The time path of the interest spread is
hump-shaped under the Ramsey solution while it is downward-sloping in the absence of commit-
ment. Further, the magnitude of the spreads tend to be higher with commitment, and the recovery
of lending relationships is faster. In terms of di¤erences, when lending relationships have a small
e¤ect on innovation or when banks have low bargaining power, the monetary authority sets larger
spreads than under the baseline. Vice versa, when lending relationships have a lower impact on
innovation or when banks have a higher bargaining power.
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Speci�cation � � � �� �u �b B � �

Baseline 0:0033 15:7 0:01 0:46 0:029 0:034 3:42 0:08 0:015
� = 0:04 0:0033 15:7 0:01 0:93 0:029 0:034 3:42 0:04 0:015
� = 0:16 0:0033 15:7 0:01 0:23 0:029 0:034 3:42 0:16 0:015

�b = 1:05�u 0:0033 15:7 0:01 0:85 0:029 0.030 3:42 0:08 0:015

�b = 1:28�u 0:0033 15:7 0:01 0:34 0:029 0.037 3:42 0:08 0:015
� = 8:0 0:0033 8:0 0:01 0:48 0:029 0:034 3:42 0:08 0:015
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