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1 Introduction

Assets in over-the-counter (OTC) markets tend to be reallocated through a sequence of bilateral

transactions that involve a core set of institutions serving as intermediaries.1 Therefore, in order

to understand how these markets function requires an understanding of the determinants of

intermediation. In this paper, we build and empirically test a theory of intermediation based on a

key friction inherent in decentralized trade: that market participants possess private information

about their idiosyncratic willingness to pay for assets.

The theory predicts that if there is heterogeneity in the ability of market participants to learn

the information of their counterparties, what we refer to as screening ability, then those investors

that intermediate assets the most must have the highest screening ability. In other words, the core

is endogenously comprised of experts. We show this statement is true regardless of how inter-

mediation and the core are defined; e.g. by an institution’s share of trade volume, their balance

of buy and sell orders, or their network connectedness to other market participants. We then

provide empirical evidence, using transaction-level micro-data, to support the key predictions of

our theory.

The theory builds on the search-theoretic OTC market literature, Duffie, Garleanu, and Ped-

ersen (2005) and Hugonnier, Lester, and Weill (2014), that models trade through random bilateral

meetings between investors with heterogeneous private valuations of an asset. We augment the

theory in two important ways. First, we assume that an investor’s valuation of the flow of div-

idends is private information. While there is common knowledge about the dividend process,

each investor is unaware of the private value of their counterparty. Traders can agree about the

risk an asset pays off, but still do not know of each others’ hedging, liquidity, or order-flow

needs. While asymmetric information about common values has been a major focus of the liter-

ature, there is indirect evidence to suggest that private value uncertainty is a major detriment to

trade in decentralized markets. For instance breakdowns in bilateral negotiations are common,

even for assets with little common value uncertainty, as described in Merlo and Ortalo-Magne

(2004) for residential houses, Backus, Blake, Larsen, and Tadelis (2020) for eBay products, and

Larsen (2020) for wholesale business-to-business auto transactions.

Second, we assume that investors are heterogeneous in their ability to learn the private in-

formation of their trade counterparty, a technology we refer to as screening ability. Specifically,

screening ability is the probability an investor learns the private information of their counter-

party in a meeting before trade takes place. This feature is meant to capture that institutions or

individual traders can differ according to their level of financial expertise, one aspect of which is

1This is often referred to as a core-periphery market structure and has been widely documented in the literature,
for instance, in the market for municipal bonds (Green, Hollifield, and Schurhoff, 2007), the Fed funds market (Bech
and Atalay, 2010), the asset-backed securities market (Hollifield, Neklyudov, and Spatt, 2017), and the corporate bond
market (Maggio, Kermani, and Song, 2016), among others.
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having better information about the trading motives of other market participants.

We then show that intermediation is endogenously linked to screening ability. Our preferred

measure of an investor’s role in intermediation is the fraction of aggregate trade volume they

account for, what we refer to as centrality. Investors with higher centrality intermediate assets the

most and form the core of the market. We show that the most central investors are experts, those

who possess the highest screening ability. We show that experts also tend to act as middlemen,

buying and selling assets in proportion to the aggregate supply in the market. While there are

also low-screening-ability investors that serve as middlemen, these investors always have lower

trade volume. Finally, we show that the most central investors also have a larger trade network

than the rest of the market resulting directly from their expertise.

To understand the intuition for why the investors most central in intermediating assets are

experts, it is helpful to describe a few features of bilateral trade. Consider a meeting between a

buyer and seller, and assume that one investor is randomly chosen to make a take-it-or-leave-it

(TIOLI) offer in the form of a bid or ask price.2 If the investor making the offer also observes the

type of their counterparty —determined by their screening ability— then they extract all of the

surplus in trade. However, if the investor is uninformed, as in Myerson (1981), they must set a

distortive price that yields informational rents to their counterparty and destroys some efficient

trades. For two investors with the same equilibrium valuation for the asset, the investor with

higher screening ability is less likely to resort to setting distortive prices and so endogenously has

a higher probability of trade. As a result, screening ability is a force that increases an investor’s

trading speed, increases their set of potential counterparties, and increases their expected profits

from trade. In general equilibrium, this generates a strong link between centrality, middlemen

activity, and size of the trade network.

In the second part of the paper, we provide empirical evidence that supports the primary

result that heterogeneity in information leads to differences in intermediation activity. To do

so, we use transaction-level data on the OTC market for credit-default-swap (CDS) indexes and

examine the differential effects of information disclosure on an institution’s trade with the core

versus periphery. A subgroup of CDS-index traders in our sample are required to file a 13-F

form to the Securities and Exchange Commission (SEC). The form contains the holdings of all

securities regulated by the SEC, which mostly consist of equities that trade on an exchange and

equity options. The SEC then makes the 13-F form public immediately after its filed and so

other market participants know detailed portfolio information about 13-F filers. Since (i) CDS

asset positions are small relative to the 13-F asset positions of these institutions and (ii) many

institutions that file a 13-F do not trade CDS, we consider a 13-F filing as exogenous variation in

2We show that TIOLI bid and ask prices are the solution to an optimal mechanism design problem that maximizes
the respective profits of sellers and buyers in the meeting, which is an application of Myerson (1981). Additionally,
we study mechanisms that maximize total surplus in the meetings and obtain the same qualitative results.
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the information the market possess about the institution’s motives to trade CDS.3

We first extend the model to include a set of investors that file 13-F. We assume that filing

a 13-F (imperfectly) reveals a filer’s private information at a known future date, a shock that

is independent of the screening ability of the filer’s counterparties. The model predicts that a

13-F filing has heterogeneous effects on the filer’s probability of trade with core versus periphery

investors. Specifically, a 13-F filing discontinuously increases the probability of trade with the

periphery, as once a filing occurs the periphery is more likely to know the filer’s private valu-

ation and are less likely to distort trade. However, a 13-F filing should have strictly less or no

effect on trade with the core, as the model predicts that these investors already possess superior

information. In other words, if the core is (at least in part) composed of institutions with bet-

ter information, then information disclosure should effect these trades less than trades with the

periphery.

We show these predictions hold in the CDS index market. We find that a 13-F filing increases

an investor’s probability of trade with the periphery in the week following a filing, but find

either a zero or smaller increase in the probability of trade with the core, depending on the spec-

ification. Our results are robust to controlling for different sets of fixed effects, classes of CDS

indexes, and types of institutions. We also show that a 13-F filing only temporarily increases the

probability of trade with the periphery up to two weeks after a filing, but the effect vanishes in

week three and beyond. Further, we show the effect is quantitatively smaller in more liquid mar-

kets as measured by total trade volume. This result is consistent with our model that generates

that private information about trade motives are less relevant in more competitive markets (i.e.

markets with high contact rates). We conclude that these results are evidence that heterogeneity

in information is an important determinant in shaping the structure of OTC markets.

We also show our model is consistent with within-market heterogeneity in trade volume

(centrality), middlemen activity, and network connections. As our model predicts, institutions

that are more central according to their share of gross trade volume also serve as middlemen,

buying and selling assets to lower volume institutions. While the market also consists of lower-

volume middlemen, these institutions have lower screening ability as evidenced by a greater

impact of 13-F filing on their trade activity compared to the high-volume middlemen. Further,

institutions that are more central also have a more extensive trade network as measured by their

share of counterparties. Our theory predicts this relationship as a direct result of heterogeneity

in screening ability as the distortions caused by low-screening-ability institutions disrupt trade.

The results in our paper follow a long tradition in economics of studying the role of in-

formation asymmetries in determining financial market outcomes. A recent literature, includ-

ing Duffie, Malamud, and Manso (2009), Golosov, Lorenzoni, and Tsyvinski (2014), Guerrieri

and Shimer (2014a), Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2015), Glode and Opp

3See Section 6.2 for a detailed discussion.
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(2016), Malamud and Rostek (2017), and Babus and Kondor (2018), study information asym-

metries in the context of decentralized asset markets. We differ by studying the endogenous

relationship between asymmetric information, expertise, and intermediation activity4

Our theory is consistent with other results in the literature about the determinants of core

institutions. For instance, Üslü (2019) and Farboodi, Jarosch, and Shimer (2017) build theories

where intermediaries are investors that possess a higher arrival rate of meetings, and thus trade

more often. Nosal, Wong, and Wright (2014) and Farboodi, Jarosch, and Menzio (2017) build

a theory where intermediaries are investors that possess superior bargaining power, providing

them with high profits from intermediation. In Chang and Zhang (2015) intermediaries are

investors with low volatility in their flow valuation and, as a result, trade with a larger set of

counterparties. We also find that intermediaries are investors with intermediate flow valuation,

a result consistent with Hugonnier et al. (2014) and Afonso and Lagos (2015) in models similar

to ours, as well as Atkeson, Eisfeldt, and Weill (2015) who show that intermediaries tend to

have intermediate risk exposure.5 A notable distinction between our environment and those

mentioned, and one that is relevant for our empirical analysis, is that the key friction driving

intermediation activity is the information structure.

2 Environment

Time is continuous and infinite and there is a measure one of infinitely-lived investors that

discount the future at rate r > 0. There is transferable utility across investors and an endogenous

supply of assets, s. Each unit of the asset pays a unit flow of dividends. The dividend flow

is common knowledge and non-transferable—only the investor holding the asset consumes its

dividends. Investors can hold either zero or one unit of the asset. We refer to investors holding

an asset as owners, and to those not holding an asset as non-owners.

Trade occurs in a decentralized, over-the-counter market in the style of Duffie et al. (2005).

Investors contact each other with Poisson arrival rate λ/2 > 0. Meetings between two investors

that are owners result in no trade: agents can hold at most one asset and there are no gains from

simply exchanging assets since they are the same. Likewise, meetings between two non-owner

investors result in no trade. Only meetings between an owner investor and a non-owner investor

can potentially involve gains from trade.

4A strand of the literature assumes exogenous market markers. An early example is Glosten and Milgrom (1985)
who show, in the presence of adverse selection, market makers charge a positive bid-ask spread; a more recent example
is Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) who study the role of market-makers in the presence of
adverse selection and search frictions. Other examples are Duffie (2012), Guerrieri and Shimer (2014b) and Chang
(2017) that consider both private and common values and Guerrieri, Shimer, and Wright (2010), Cujean and Praz
(2015), Zhang (2017) and Sultanum (2018) that consider private values, but do not study endogenous intermediation.

5We are also related to the literature that model intermediation with explicit links between investors. Examples are
Farboodi (2017), Babus and Kondor (2018) and Wang (2018).
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Investors are heterogeneous in two dimensions: they differ in their screening ability, α, and

in the utility they derive from consuming the dividend flow of an asset, ν. When two investors

meet, the screening ability α is public information, while the utility type ν is private information.

The screening ability α determines the probability by which an investor learns the utility type

of their counterparty. We let θ = (α, ν) denote the investor type. When two investors of types

θ = (α, ν) and θ̂ = (α̂, ν̂) meet, the investor with screening ability α learns ν̂ with probability α,

and the investor with screening ability α̂ learns ν with probability α̂.6

Types are fixed over time, independent across investors, and are drawn from the cumulative

distribution F. The distribution F has support Θ := {αi}I
i=1 ×R, which satisfies 0 ≤ α1 < α2 <

. . . < αI = 1, and, for each αi, F(αi, ν) = ∑αi≤α

∫ ν
−∞ f (αi, ν̃)dν̃ has a continuous density f (αi, ·)

and
∫

ν2F(αi, dν) is finite.7

We assume that the screening ability α has finite support for technical reasons, but we can

take the number of grid points to be as large as we want.

Assets mature and investors produce new assets following two Poisson distributions. An

asset matures with Poisson arrival rate µ > 0. When the asset matures, it disintegrates. With

Poisson arrival rate η > 0, an investor faces an opportunity to issue a new asset at no cost.

Investors can freely dispose of assets at any time.

As a result of maturity and issuance, a steady state with positive trade emerges in our econ-

omy even without time-varying types, which are required for existence of a steady state with

trade in Duffie et al. (2005) and much of the literature that followed. Adding time-varying types

in our setup is straightforward, but it does not provide additional insights so we do not incorpo-

rate this feature. Further, a convenient result of our approach is that, unlike in the model with

time-varying types, the identity of core and periphery investors will be linked to the persistent

type of the investor. This not only seems reasonable, in the sense we tend to believe that the

identity of dealers, for example, does not vary through time, but will also allow us to study con-

cretely the connection between an investor’s type and her position in the trading network. This

will be particularly relevant when trying to disentangle our model of intermediation building on

information frictions from others in the literature.
6A natural question is whether one investor knows what the other investor knows in the meeting—that is, what

information is common knowledge. Say two investors, A and B, meet, and investor A learns the utility type of
investor B. Does investor B know that A knows his utility type? And does A know if B knows what he knows? To
keep it simple, we assume that the information structure (who knows what) is common knowledge in a meeting.
However, this assumption is without loss of generality. That is because whether an investor knows the utility type
of the counterparty or not only informs the counterparty about the screening ability—there is no correlation between
what an investor knows and his utility type. Since the screening ability of investors is public information, there is
nothing to learn from whether an investor knows the utility type of the counterparty or not.

7We assume that ν has support in R to avoid dealing with corner solutions in the proofs. Because of the unbounded
support, we assume that the distribution has a finite second moment, which we use in the equilibrium existence proof
to guarantee that the optimal bid/ask prices exist and are finite.
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3 Price setting, asset valuations, and allocations

In this section, we study price setting and provide expressions for value functions and the dis-

tribution of assets among investors. We restrict attention to steady-state equilibria and omit the

time t from the set of states of the economy. We denote the measures of owners and non-owners

of type θ̃ ≤ θ by Φo(θ) and Φn(θ), respectively, and the measure of assets by s =
∫

dΦo. We

denote the value function of an owner of type θ by Vo(θ) and the value function of a non-owner

by Vn(θ). Finally, ∆(θ) denotes the reservation value of an investor, which is the compensation

that makes the investor indifferent between holding and not holding an asset.

The reservation value of an investor can be positive or negative because ν has support in the

real numbers. A negative reservation value means the investor would have to be compensated

to hold an asset. In this case, the investor would then dispose of the asset and, therefore, the

equation Vo(θ)−Vn(θ) = max{∆(θ), 0} must hold. This suggests an alternative interpretation of

∆(θ): ∆(θ) is the maximum gain an investor can get without disposing of the asset. If this value

is negative, the investor is better off just disposing of the asset. Whenever it is not ambiguous,

we use ∆o instead of ∆(θo), and ∆n instead of ∆(θn).

3.1 Bilateral trade

We cannot resort to Nash bargaining, or similar protocols, to determine the terms of trade due to

private information within a meeting. Instead, we assume that when an owner and non-owner

meet, they play a random dictator game. With probability ξo ∈ (0, 1) the owner makes a take-it-

or-leave-it offer, with commitment, to the non-owner that takes the form of an ask price. Likewise,

with probability ξn = 1− ξo the non-owner makes a take-it-or-leave-it offer, with commitment,

to the owner that takes the form of a bid price.

Two observations seem relevant regarding the random dictator game. First, the random

dictator game allows us to accommodate different kinds of markets, regarding whether sellers or

buyers typically set the terms of trade. For example, in the market for houses the seller typically

sets the terms of trade, while in the market for labor the buyer (e.g. a firm) set the terms of

trade. Second, while imposing bid and ask prices may seem restrictive, we show in Appendices

A.2.1 and A.2.2 that this is equivalent to a generic mechanism design problem where the owner

and non-owner maximize their respective, expected profits subject to individual rationality and

incentive compatibility. That is, even when allowed to design complicated buying and selling

mechanisms, take-it-or-leave-it bid and ask prices are indeed optimal when setting the terms of

trade.8

The choice of ask and bid prices depend on whether or not the investor making an offer

8In an online appendix, we explore a mechanism that maximizes the total trade surplus in a meeting, as in Myerson
and Satterthwaite (1983), and obtain similar results.
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observes the utility type of their counterparty. When the investor making an offer observes the

utility type of their counterparty, she can infer their reservation value and sets the terms of

trade—the ask or bid price—to extract the entire gains from trade, if positive. That is, when the

owner is informed, the optimal ask price is asko = ∆n if ∆o ≤ ∆n, and asko = ∆o otherwise.

Similarly, when the non-owner is informed, the optimal bid price is bidn = ∆o if ∆o ≤ ∆n, and

bidn = ∆n otherwise. Note that, in the particular case of the model with complete information,

where α1 = αI = 1, the trade protocol replicates Nash bargaining with parameter ξo as the

seller’s bargaining power.

When the investor making an offer does not observe the utility type of their counterparty,

they must set their ask and bid prices under private information. First, consider the problem of

the uninformed owner setting their ask price. The optimal ask price solves

max
ask

objo(ask; αn) := [ask− ∆o] [1−Mn(ask; αn)] , (1)

where αn denotes the screening ability of the non-owner counterparty and

Mn(∆̃; αn) =

∫
1{∆(θ)≤∆̃, α=αn}dΦn(θ)∫

1{α=αn}dΦn(θ)

denotes the endogenous cumulative distribution of reservation values of non-owners with screen-

ing ability αn. For a given ask, the measure 1−Mn(ask; αn) of counterparties value the asset above

the ask price and so accept the offer. If trade occurs, the owner receives the ask price and loses

her reservation value for the asset ∆o.

A solution to (1) exists if Mn(·; αn) has no mass points and finite second moments—which is

satisfied in equilibrium. If problem (1) has multiple solutions, we let asko be the lowest ask price

that solves (1). Similarly, when defining the optimal bid later in equation (2), we let it be the

highest bid price that solves (2). However, we can show that the measure of investors that trade

with positive probability and are indifferent between multiple bids or asks is zero in equilibrium,

so the selection we use here is immaterial for our results.

The next lemma provides a useful result: the optimal ask price is strictly above the owner’s

reservation value whenever there are expected gains from trade. See Appendix A for all the

proofs in the article.

Lemma 1. Consider a meeting between an owner with reservation value ∆o and a non-owner with screen-

ing ability αn. Then, 1−Mn(∆o; αn) > 0 implies that asko is strictly above ∆o.

It is easier to grasp the intuition for the above result when Mn(·; αn) is continuously differ-

entiable. Let mn(·; αn) be the derivative of Mn(·; αn). The derivative of the objective function in

(1) is ∂objo(∆o ,αn)
∂ask = 1−Mn(asko; αn)− [asko − ∆o]mn(asko; αn). When evaluated at asko = ∆o, this

derivative is positive whenever 1−Mn(∆o; αn) > 0. By increasing their ask price, at the margin,

the owner gains an additional profit of 1−Mn(∆o; αn) > 0 while only sacrificing a measure of
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trades mn(asko; αn) that yield no profit when asko = ∆o. When 1− Mn(∆o; αn) > 0, the owner

strictly prefers to set an ask price at a markup above their reservation value.

An implication from the previous discussion is that there exists a measure of non-owners,

Mn(asko; αn)−Mn(∆o; αn), that have reservation value above the owner’s reservation value but

do not buy the asset. Private information destroys efficient bilateral trades. This is a well-known,

negative result from Myerson and Satterthwaite (1983) where the distributions, Mn and Mo, are

exogenous. Here we show the result holds in a general equilibrium model of trade. The following

Corollary formalizes this result.

Corollary 1. Consider a reservation value of owners ∆o and a non-owner’s screening ability αn. If

there exists ε̄ > 0 such that Mn(∆o + ε; αn) − Mn(∆o; αn) > 0 for all ε ∈ (0, ε̄), then with positive

probability the non-owner has a higher reservation value than the owner and they still do not trade—that

is, Mn(asko − ε; αn)−Mn(∆o; αn) > 0 for some ε > 0.

The optimal bid price under private information follows closely to the optimal ask price

discussed above, and is given by the solution to

max
bid

objn(bid; αo) := [∆n − bid] Mo(bid; αo), (2)

where

Mo(∆̃; αo) =

∫
1{∆(θ)≤∆̃, α=αo}dΦo(θ)∫

1{α=αo}dΦo(θ)

denotes the endogenous cumulative distribution of reservation values of owners with screening

ability αo. For a given bid, the measure Mo(bid; αo) of owners with screening ability αo accept

the offer and sell the asset to the non-owner. When the non-owner buys the asset, she gains

her reservation value ∆n and pays the bid price. As we discussed for the owner’s problem, a

solution to the buyer’s problem presented in (2) exists as long as Mo(·; αo) satisfy some regularity

conditions, which we later verify hold in equilibrium.

Whereas the optimal ask price under private information is a markup over the reservation

value of the owner, the opposite is true for the optimal bid price.

Lemma 2. Consider a meeting between an non-owner with reservation value ∆n and an owner with

screening ability αo. Then, lim∆↗∆n Mo(∆; αo) > 0 implies that bidn is strictly below ∆n.

The proof of Lemma 2 is analogous to the proof of Lemma 1 and thus we omit it. Non-owners

set a markdown under their reservation value when buying the asset. As a result, owners with

reservation value below ∆n and above the bid, will not sell the asset to the non-owner. Private

information destroys bilaterally efficient trades, whether the owner or non-owner sets the terms

of trade. We state this result below and omit its proof since it is analogous to the proof of

Corollary 1.
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Corollary 2. Consider a reservation value of non-owners ∆n and a owner’s screening ability αo. If

there exists ε̄ > 0 such that Mo(∆n; αo) − Mo(∆n − ε; αo) > 0 for all ε ∈ (0, ε̄), then with positive

probability the non-owner has a higher reservation value than the owner and they still do not trade—that

is, Mo(∆n − ε; αo)−Mo(bidn; αo) > 0 for some ε > 0.

3.2 Expected gains from trade

The expected gains from trade in a meeting of an owner of type θo are given by

πo(θo) = ξo

∫
αo (∆n − ∆o) 1{∆n≥∆o} + (1− αo) (asko − ∆o) 1{∆n≥asko}d

Φn(θn)

1− s

+ ξn

∫
(1− αn) (bidn − ∆o) 1{bidn≥∆o}d

Φn(θn)

1− s
, (3)

and of a non-owner of type θn are given by

πn(θn) = ξn

∫
αn (∆n − ∆o) 1{∆n≥∆o} + (1− αn) (∆n − bidn) 1{bidn≥∆o}d

Φo(θo)

s

+ ξo

∫
(1− αo) (∆n − asko) 1{∆n≥asko}d

Φo(θo)

s
. (4)

Consider equation (3). The first term accounts for the expected profits when the owner is

selected to make the offer, which occurs with probability ξo. In this case, with probability αo the

owner is informed about the utility type of her counterparty and uninformed otherwise. When

she is informed, the owner trades with any non-owner with reservation value larger than ∆o

and receives the entire trade surplus, ∆n − ∆o. When uninformed, the owner sets an ask price

under private information and gets expected profits according to (1). The second term accounts

for the expected profits when the non-owner is selected to make the offer, which occurs with

probability ξn. In this case, the owner only receives positive profits if (i) her trade counterparty

is uninformed, which occurs with probability 1− αn, and (ii) her reservation value is below the

optimal bid price of the non-owner. Otherwise, whenever the non-owner is informed about the

utility type of the owner, the non-owner extracts the entire gains from trade. Finally, notice that

the owner takes expectations over the endogenous distribution of non-owners, Φn(θn)/(1− s).

The expected gains from trade in a meeting of a non-owner of type θn, presented in equation (4),

follow analogously to equation (3).

3.3 Value functions and reservation values

The value function of an owner of a type θ satisfies

rVo(θ) = max
{

ν− µ
[
Vo(θ)−Vn(θ)

]
+ λ(1− s)πo(θ), rVn(θ)

}
. (5)

The value function of an owner of a type θ, discounted at rate r, is the maximum between the

value of owning an asset and the value of disposing of it. The value of owning an asset equals
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the sum of three terms. The first term accounts for the flow utility of holding the asset, ν. The

second term accounts for the change in value when the asset matures and the owner becomes a

non-owner, which occurs at rate µ. The third term accounts for the expected profits of an owner

when meeting a non-owner; the probability that two investors meet is given by 2λ/2 = λ and,

conditional on meeting, the owner contacts a non-owner with probability (1− s). Finally, the

value of disposing of an asset equals the value of being an non-owner.

The value function of a non-owner of a type θ satisfies

rVn(θ) = η
[
Vo(θ)−Vn(θ)

]
+ λsπn(θ). (6)

The value of not owning an asset, discounted at rate r, equals the sum of two terms. The first term

accounts for the value of receiving an issuance opportunity, which arrives at rate η. Conditional

on receiving an issuance opportunity, the non-owner decides whether it is optimal to produce

the asset and become an owner, or to not produce and remain a non-owner. The non-owner can

always issue the asset and then dispose of it, so Vo(θ) ≥ Vn(θ), as we can see from equation (5).

As a result, we can without loss of generality assume that the asset is always issued when an

issuance opportunity arrives. The second term accounts for the expected profits of a non-owner

in bilateral trade, where a meeting occurs with an owner at rate λs.

Finally, the reservation value for an investor of type θ, ∆(θ), satisfies

∆(θ) =
ν

r + µ + η︸ ︷︷ ︸
fundamental

value

+
λ(1− s)πo(θ)

r + µ + η︸ ︷︷ ︸
option value

to sell

− λsπn(θ)

r + µ + η︸ ︷︷ ︸
option value

to buy

. (7)

Equation (7) decomposes the reservation value into three components. The first component

represents the fundamental value of holding an asset, the discounted utility of the dividend

payoff. The second and third components represent the option values of selling and buying the

asset, respectively. What is important for the reservation value is the net, or the expected gain in

value from buying then selling an asset, or the expected gain from intermediation.

By manipulating equations (5) and (6), we can show that Vo(θ)−Vn(θ) = max{∆(θ), 0} for all

θ. That is, whenever it is profitable for an investor to hold an asset until selling it, the reservation

value is exactly the difference between the value of owning and not owning an asset. If θ is

such that ∆(θ) < 0, on the other hand, we must have that Vo(θ) = Vn(θ) since an owner would

immediately dispose of any asset in her possession. Moreover, such investor would never hold

any asset and we must have that the value of owning and not owning an asset both equal zero.

3.4 The distribution of assets

For each θ, f (θ) represents the density of investors with utility type θ. These investors can

be owners, with density φo(θ), and non-owners, which have density φn(θ), and satisfy φo(θ) +
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φn(θ) = f (θ). Investors with negative reservation value immediately dispose of any asset. As a

result, when θ is such that ∆(θ) < 0, we have that φ̇o(θ) = φo(θ) = 0 and φn(θ) = f (θ). When θ

is such that ∆(θ) ≥ 0, the change over time in the measure of owners of type θ satisfies

φ̇o(θ) = ηφn(θ)− µφo(θ)− λφo(θ)q̄o(θ) + λφn(θ)q̄n(θ)

= η[ f (θ)− φo(θ)]− µφo(θ)− λφo(θ)q̄o(θ) + λ[ f (θ)− φo(θ)]q̄n(θ) = 0, (8)

where the measure of meetings that an owner of type θ sells an asset is

q̄o(θ) =
∫

q(θ, θn)dΦn(θn), (9)

the measure of meetings that a non-owner of type θ buys an asset is

q̄n(θ) =
∫

q(θo, θ)dΦo(θo), (10)

and the probability that an owner of type θo sells an asset to a non-owner of type θn is

q(θo, θn) = 1{∆n≥∆o} − ξo(1− αo)1{asko>∆n≥∆o} − ξn(1− αn)1{∆n≥∆o>bidn}. (11)

The first term on the right-hand side of (8) accounts for the inflow of non-owners of type

θ that become owners because they receive an issuance opportunity and find it worthwhile to

produce the asset. The second term accounts for the outflow of owners of type θ because of asset

maturity. The third term accounts for the outflow of owners of type θ that sell their asset. The

fourth term accounts for the inflow of non-owners of type θ that buy an asset. A steady-state

equilibrium satisfies φ̇o(θ) = 0 for all θ.

Given the density of owners, φo, the measure of owners then satisfies

Φo(θ) =
∫

θ̃≤θ
φo(θ̃)dθ̃ = ∑

α̃∈{αi}I
i=1

1{α̃≤α}

∫ ν

−∞
φo(θ̃)dν̃. (12)

Note that, because α is discrete, the integral over θ is defined as the sum over α and integral over

ν. We use this notation in the remaining of the paper unless it is ambiguous. Since the measure

of investors, F, is exogenous, we can obtain an expression for the measure of non-owners from

the following equilibrium condition,

Φo(θ) + Φn(θ) = F(θ). (13)

Finally, all assets in the economy are held by owners so the stock of assets is

s = lim
ν↗∞

Φo(α
I , ν). (14)

4 Equilibrium

We focus on symmetric steady-state equilibria.

Definition 1. A family {bidn, asko, ∆, Φo, Φn, s} constitutes a symmetric steady-state equilibrium if it

11



satisfies: (i) the ask function, asko, solves the owner’s problem (1), and the bid function, bidn, solves the

non-owner’s problem (2); (ii) the reservation value, ∆, satisfies (7), where πo and πn are given by (3)

and (4); and (iii) the distribution of owners, Φo satisfies (12) with φo satisfying (8), the distribution of

non-owners, Φn, satisfies (13), and the stock of assets, s, satisfies equation (14).

Note that the equilibrium definition does not include the value functions Vo and Vn because we

can recover them from equations (5) and (6).

The family that constitutes an equilibrium can be understood as containing two sets. The first

set contains the bid and ask functions, (bidn, asko), and provides trade probabilities and asset

prices. The second set contains the reservation value function and the asset distribution across

types, defined by (∆, Φo).9 This set provides the distribution of reservation values and asset

holdings. The two components depend on each other. The bid and ask prices, by providing the

trade probabilities, determine the asset distribution across types. Asset prices, combined with

the asset distribution across types, determine reservation values. Reservation values and the

asset distribution across types determines optimal bid and ask prices, as shown in Section 3.1.

An equilibrium is essentially a fixed point on these equilibrium objects.

The complexity arising from the connection between trade outcomes and reservation values

and asset distribution across types is a feature not only of our model, but rather a general char-

acteristic of the search-theoretic OTC literature that builds on Duffie et al. (2005). However, our

approach to dealing with this complexity is quite different from the literature. If trade occurs

under complete information, as assumed in most of the literature, we can easily characterize the

connection between trade outcomes, reservation values and asset distribution across types.

To see this, notice Duffie et al. (2005), Hugonnier et al. (2014), Farboodi, Jarosch, and Shimer

(2017) and Farboodi, Jarosch, and Menzio (2017), among others, study OTC trading under com-

plete information, and provide a constructive proof of equilibrium existence.10 Relative to our

setup with private information, under complete information investors do not need to know the

asset distribution across types when setting their bid and ask strategies. Further, since reserva-

tion values ∆ are increasing in the flow valuation of investors ν for any distribution of types,

trade occurs whenever νn ≥ νo. These two observations lead to the result that the trade pattern

is resolved without knowledge of reservation values or the asset distribution. With the trade

pattern at hand, it is straightforward to solve for the asset distribution across types and in turn

one can recover reservation values.

In our environment under private information this approach is not feasible: trade outcomes

depend on reservation values and the asset distribution across types, as well do optimal prices.11

9The asset distribution of non-owners and the total asset supply can be obtained from the identities Φo + Φn = F
and s = limν↗∞ Φo(αI , ν).

10Actually, in most cases, they are all able to provide an exhaustive characterization of the equilibrium.
11Another approach is that one in Üslü (2019) where the insight is that, under an appropriate choice of the utility
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This prevents us from a constructive existence proof so instead we rely on a fixed point theorem.

An advantage of our approach is that it is quite general: it can be applied to existing models with

complete information and, as long as the trading protocol preserves some form of continuity, it

can be applied to any other model that builds on Duffie et al. (2005), with or without trading

frictions. These can include models in which pricing is determined by a generic mechanism.

The next Proposition guarantees that an equilibrium exists in the economy and, further, that

imposing trade using bid and ask prices is not restrictive.

Proposition 1. There exists a symmetric steady-state equilibrium, with bid and ask prices associated with

optimal buying and selling mechanisms.

To prove existence we exploit the fact that bid and ask prices are intertwined with reservation

values and the asset distribution across types. Given a pair (∆, Φo), we obtain bid and ask

functions (bidn, asko). The bid and ask functions generate trade probabilities and asset prices

that we use to update the initial guess (∆, Φo) and obtain the operator T(∆, Φo) = (∆̂, Φ̂o). An

equilibrium is characterized by a pair (∆, Φo), satisfying T(∆, Φo) = (∆, Φo).

We apply the Schauder fixed point theorem to the operator T. However, it is not trivial to

show that the conditions necessary to apply the fixed point theorem hold in the model. Two

conditions are particularly difficult: the operator has to map a compact set into itself, and the

operator has to be continuous. In what follows, we describe the intuition of the problem and

how we overcome it. Readers less interested in these more technical details can freely skip to

Section 5 without any loss.

Although the functions (∆, Φo) are continuous, the space of continuous functions—even if

uniformly bounded and defined on a compact support—is not compact. We deal with this by

working in a set of Lipschitz continuous functions with the same constant.12 In this set, the

Arzelà-Ascoli theorem implies that any sequence has a converging sub-sequence, provided that

the support is compact.13 For the theorem to work, however, we also need to show that T

preserves Lipschitz continuity, guaranteeing that T maps the set into itself. We derive this result

from the following observation. If the change in the reservation value ∆ implied by a change

from ν1 to any finite ν2 > ν1 is bounded by ν2−ν1
λ+r+µ+η ≤ ∆(α, ν2) − ∆(α, ν1) ≤ ν2−ν1

r+µ+η , then ∆̂

function and assumptions regarding the exogenous distributions of types, under complete information the trade
outcomes only depend on the first moment of the asset distribution. Thus, the fixed-point can be reduced to a set of
functional equations that can then be studied using standard techniques. This approach is not feasible in our setting,
due to private information: the optimal trade mechanism requires more of the asset distribution than its first moment.

12A function f : X → Y between metric spaces (X, dX) and (Y, dY) is Lipschitz continuous if there exists a K ≥ 0
such that dY

(
f (x1), f (x2)

)
≤ KdX(x1, x2) for all x1, x2 ∈ X. K is called the Lipschitz constant.

13Because the utility type ν has support in R, the theorem does not apply directly to our environment. We deal
with this by first showing that equilibrium exists in a version of our model with ν ∈ [

¯
ν, ν̄]. Then we construct our

equilibrium as a limit of economies with ν̄→ ∞ and
¯
ν→ −∞.
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satisfies the same property. We can similarly bound the variations in Φo using

η

λ + µ + η
inf

ν∈[ν1,ν2]
{ f (α, ν)} and

λ + η

λ + µ + η
sup

ν∈[ν1,ν2]

{ f (α, ν)},

to obtain the uniform Lipschitz constant.14

Once we have established the compactness of the domain of T, we need to show that T is

continuous on (∆, Φo). Showing continuity is particularly hard in our setting due to private in-

formation. Most of the literature building on complete information focuses on Nash bargaining.

With Nash bargaining, trade occurs in a meeting when the reservation value of non-owners is

above the reservation of owners, and the price is a weighted average of the reservation values. In

this case, it is easy to see that small changes in the reservation value translate into small changes

in trade probabilities and prices. Further, the asset distribution across types does not show up in

the bargaining outcomes—except through its indirect effect on the reservation value. Therefore,

small changes in the asset distribution across types cannot generate jumps in trade probabili-

ties or prices. As a result, in models building on complete information using Nash bargaining,

continuity is easily guaranteed.

This argument does not follow through in our model. For example, an owner deciding on an

ask price is trading off selling at a high price infrequently with selling at a low price frequently.

It can happen that these two forces cancel each other, generating multiple optimal ask prices. A

sufficient condition for the ask to be well behaved is that the hazard ratio of the distribution of

non-owners is monotone. However, the distribution is endogenous so we cannot impose that to

be the case. When the hazard ratio is not monotone and multiple optimal ask prices arise, small

changes in the reservation value function ∆ or the asset distribution distribution Φo can make

one of the ask prices to be strictly preferred by the owner, causing a jump in trade probabilities.

This could prevent the operator T from being continuous.

We show T is continuous in spite of the argument above. The reason is that jumps in trade

probabilities occur in a set with zero measure. Therefore, although they can manifest on the

densities of Φo and Φn, the uniform convergence of Φo and Φn, used in the characterization of

continuity, is preserved. Further, because these jumps occur when investors that want to sell an

asset are indifferent between multiple ask prices, the expected gains from trade do not jump. An

identical argument follows for investors that want to buy an asset, and are designing optimal bid

prices. As a result, we can also show uniform convergence of reservation values.

A useful result we will use later is that reservation values are increasing in the utility type, ν.

14The bounds we obtain for the variation of ∆ and Φo are not without economic meaning. For example, the increase
in reservation value ∆ implied by a change from ν1 to ν2 cannot be larger than the variation we would observe when
the trade probability is zero. The reason is that an increase in ν reduces an investor’s profits when selling. Although it
increases the profits when buying an asset, this decreases the reservation value because it increases the value of being
an non-owner. Both these variations contribute negatively to the change in reservation value so we obtain an upper
bound when the trade probability is zero. The other bound carries similar economic intuition.
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Lemma 3. In any symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, the reservation value

∆(α, ·) is continuous and strictly increasing in ν for every α. Moreover, limν↗∞ ∆(α, ν) = ∞ and

limν↘−∞ ∆(α, ν) = −∞ hold for any α.

5 Private Information and Intermediation

We now study how private information shapes an investor’s role in intermediation, or the process

by which assets flow from low-value investors to high-value investors. We consider several

measures that capture an investor’s role in re-allocating assets, including their share in gross

trade volume (Section 5.1), their propensity to serve both sides of the market as buyer and seller

(Section 5.2), and their degree of connectedness to other investors (Section 5.3). We also study

the way information influences rents in the trading network (Section 5.4).

5.1 Screening ability and centrality

We start by defining an investor’s centrality as the share of aggregate trade volume they account

for. Given the measures of investors, φo(θ) and φn(θ), and trading probabilities for owners and

non-owners, q̄o(θ) and q̄n(θ), associated with equations (8)-(10), centrality is given by

c(θ) =
λ

2Vol
× φo(θ)q̄o(θ) + φn(θ)q̄n(θ)

f (θ)
, (15)

where Vol = λ
∫ ∫

q(θo, θn)dΦo(θo)dΦn(θn) is total trade volume and
∫

c(θ) f (θ)dθ = 1. In equa-

tion (15), the expected probabilities of trade are weighted by the fraction of time spent as buyer

or seller, φn/ f and φo/ f , respectively. In order to have high centrality an investor must not only

have a high probability of trade conditional on a meeting but also have a high rate of meetings

with gains from trade. For instance, the investor with the lowest asset valuation will have a high

probability of selling an asset, since it is likely that any non-owner they meet will value the asset

more than her, but they will spend little time possessing an asset in equilibrium and so seldom

get the chance to sell.

The following lemma establishes a useful partial equilibrium result: if two investors have the

same reservation value for an asset, the investor with higher screening ability is more central.

Lemma 4. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, and let the types

θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then, (i) if ∆(θ) = ∆(θ̂) < 0, we have that

c(θ) = c(θ̂) = 0, and (ii) if ∆(θ) = ∆(θ̂) ≥ 0, we have that c(θ) > c(θ̂) > 0.

Figure 1 illustrates the result in Lemma 4. It shows the level curves of the reservation value

in a two-dimensional graph with the utility type ν on the horizontal axis and screening ability

α on the vertical axis. For a given level curve, the red arrows indicate the direction in which

centrality increases. Conditional on having the same reservation value, an investor with a higher
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screening ability will have a higher probability of trade in a meeting—as either a buyer or seller—

because better information leads to a better trading technology in equilibrium. Lemma 20 in

the Appendix formalizes this result. It then follows that, for a given reservation value, higher

screening ability α implies higher centrality.

Figure 1: Reservation value level curves

ν

α
α = αI

Notes: The figure presents reservation value level curves –i.e. ∆(θ) = ∆̃– as a function of asset valuation ν and
screening ability α. Each blue line represents a different level curve. The red arrows represent the direction by
which centrality increases, for a given reservation value level curve.

The reservation value level curves can be upward or downward sloping, as we illustrate in

Figure 1. The reservation value is always increasing in utility type ν because it represents the

flow value of holding an asset. However, the effect of increasing screening ability α depends

on its effect on the difference between the option value of selling relative to buying, as can be

seen in equation (7). When ν is high, investors are typically buyers in equilibrium as it is very

costly for them to give up the utility stream that follows from holding an asset. As a result,

screening ability affects their option value of buying more relative to selling since they seldom

meet investors who value the asset more but often meet investors who value it less. Hence, in

order to keep the reservation value constant as ν increases, the option value of buying must also

increase (lowering the reservation value). This requires a higher screening ability α. When ν is

low, the opposite is true and α must decrease to keep the reservation value constant.

We now turn to studying how information shapes centrality in general equilibrium.

Definition 1. An investor type θ∗ is the most central if c(θ∗) ≥ c(θ) for all θ ∈ Θ.

Proposition 2. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}. If an investor

type θ∗ = (α∗, ν∗) is the most central, then α∗ = aI and c(θ∗) > c(θ) for all investors type θ ∈ Θ that

are not screening experts (that is, satisfying α < aI).

Figure 2 illustrates the results in Proposition 2. It shows the level curves of centrality in a

two-dimensional graph, with screening ability α and utility type ν. The investors most central in

intermediating assets must have the highest screening ability. To understand the intuition for this
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result, consider any investor θ = (ν, α) with α < αI . We can show that limν↘−∞ ∆(αI , ν) = −∞

and limν↗∞ ∆(αI , ν) = ∞. As a result, there must exist ν′ such that ∆(αI , ν′) = ∆(θ). Then, by

Lemma 4, if ∆(θ) ≥ 0 we must have c(αI , ν′) > c(θ). This implies that the most central investor

has to be an expert.

However, as Figure 2 shows, not all investors with the highest screening ability are most

central. Centrality is maximized at α = αI and an intermediate value of ν. Investors with

high ν tend to have high reservation value, which implies they seldom engage in selling assets.

Investors with low ν tend to have low reservation value, which implies they seldom engage in

buying assets. The most central investor will have some intermediate valuation, ν∗, that will

allow her to engage in trade both as a buyer and as a seller.

Figure 2: Trade centrality level curves

ν

α
α = αI(αI , ν∗)

(0.15, ν̂) α = 0.15

Notes: The figure presents trade centrality level curves –i.e. c(θ) = c̃– as a function of asset valuation ν and
screening ability α. The gray arrows show the direction by which the level curves increase. The arrows over the
blue dotted lines show, for a given value of α, how centrality increases with ν. Finally, centrality is maximized
at (αI , ν∗).

Not only does the most central investor have the highest screening ability, but a measure of

investors above a certain centrality threshold do as well.

Proposition 3. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}. Then, α = αI

for all investors type θ = (α, ν) ∈ Θ such that c(θ) ≥
¯
c, where

¯
c :=

1
2

sup
θ∈Θ
{c(θ)}+ 1

2
sup
θ∈Θ
{c(θ); α ≤ αI−1}.

Proposition 3 implies that the group of investors that are most central in intermediating assets

all possess the highest screening ability. In other words, those investors satisfying the condition

c(θ) ≥
¯
c endogenously form a core of a core-periphery market structure. They are the top-p

investors in terms of centrality, where p :=
∫

1{c(θ)≥
¯
c}dF.

Finally, we note that investors belonging to the core of the trading network, as defined above,

trade at a higher speed than investors in the periphery. The result follows as, in the model, speed

is proportional to trade volume, as a result of asset holdings being restricted to {0, 1}.
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5.2 Screening ability and middleman activity

An important characteristic of intermediation is that an investor serves both sides of the market,

as buyer and seller, acting as a middleman. In this section, we study how screening ability and

centrality are related to an investor’s role as a middleman.

Serving as a middleman, by buying and selling assets, and having a high centrality in terms

of trade volume may seem to be closely related measures of intermediation—but they do not

need to be. An investor can have a low volume of trade, and thus have low centrality, and still

act as a middleman. Conversely, an investor can have a high volume of trade, and thus have high

centrality, while predominantly engaging on one side of the market. We show in this section that

high centrality investors are not only experts, as we showed earlier, but are also middleman.

We characterize an investor’s middleman activity by the extent the investor engages in buying

versus selling. Let sn(θ) denote the share of an investor’s trades in which the investor is a buyer,

what we refer to as their buying share. For θ satisfying ∆(θ) < 0, the buying share is not well

defined because the investor does not trade, either as a buyer or a seller, so we set it to zero. For

θ satisfying ∆(θ) ≥ 0, the investor’s buying share is

sn(θ) =
φn(θ)q̄n(θ)

φo(θ)q̄o(θ) + φn(θ)q̄n(θ)
=

[µ + λq̄o(θ)]q̄n(θ)

[η + λq̄n(θ)]q̄o(θ) + [µ + λq̄o(θ)]q̄n(θ)
, (16)

where the second equality above follows by using the equilibrium conditions (12) and (13). An

investor is more likely to serve as a buyer if she spends more time on average as a non-owner,

given by φn, and conditional on being a non-owner, has a high ex-ante probability of trade, given

by q̄n. In equilibrium, the buying share of an investor depends on the relative inflow and outflow

of assets, as regulated by differences in η relative to µ.

We start by analyzing the connection between centrality and buying share in our model under

complete information, where α1 = αI = 1. In this case, we are able to fully characterize the

centrality-buying share relationship and provide a closed-form expression for the buying share

of the most central investor. Then, we study numerically the case with private information.

The next proposition relates an investor’s centrality and buying share in the model with

complete information.

Proposition 4. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s} in an economy

with complete information—that is, α1 = αI = 1—and let ν∗ be the most central investor. Given νa and

νb, if either sn(1, νa) < sn(1, νb) ≤ sn(1, ν∗) or sn(1, νa) > sn(1, νb) ≥ sn(1, ν∗) then c(1, νb) > c(1, νa).

The proposition states that, under complete information, as an investor’s buying share moves

away from that of the most central investor, the investor’s centrality decreases monotonically in

their buying share. Figure 3 provides numerical examples of this relationship, one where µ < η,

one where µ = η, and one where µ > η. As a function of the investors’ buying share, centrality

is single-peaked, attaining its unique maximum at the buying share of the most central investor.
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Figure 3: Buying share and centrality, under complete information
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Notes: We set α = 1 for all investors and r = 0.1, η = 1/8, µ ∈ {η/5, η, 4η} λ = 4.0, ξ0 = 0.5, and ν ∼ U[.3, 3.5]. For each
case, we normalize the centrality of any investor by dividing by the centrality of the most central investor.

We can further characterize the buying share of the most central investor under complete

information, as summarized in the next proposition.

Proposition 5. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s} in an economy

with complete information—that is, α1 = αI = 1. Then, the most central investor is of type θ∗ = (1, ν∗)

with ∆(1, ν∗) > 0 and buying share sn(1, ν∗) =
[
1 + η+λq̄n(1,ν∗)

µ+λq̄n(1,ν∗)

]−1
.

The most central investor acts as a middleman, and the degree of middleman activity depends

on the arrival rate of asset creation opportunities η relative to the depreciation rate µ. When

η = µ, we obtain that sn(1, ν∗) = 1/2. In this case, being a central investor entails a high degree

of middleman activity, buying and selling assets in equal proportions. This is the case depicted

as a solid line in Figure 3.

When η > µ the buying share of the most central investor is lower than 1/2. There are direct

and indirect effects of increasing η on the buying share of an investor. The direct effect is that

a higher η provides more frequent opportunities for an investor to obtain an asset without the

need of buying it. This effect acts to reduce the buying share of an investor. The indirect, general

equilibrium effect is that, as a result of a higher η, the market will have a higher population of

owners. In turn, this implies that it is now easier for an investor to buy an asset in the market,

thus forcing the buying share of the investor to increase. Although these two effects push the

buying share in opposite directions, we can show that when η > µ the direct effect dominates

and an investor is central in trade when they sell often. This forces the buying share of the most
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central investor to be below 1/2 (dash-dotted line in the Figure 3). In particular, when η diverges

to infinity, sn(1, ν∗) → 0. Here, as asset creation opportunities arrive instantaneously, the most

central investor never buys assets.

When η < µ the same intuition holds but in the opposite direction, forcing the buying share

of the most central investor to be above 1/2 (dashed line in the Figure 3). In particular, when

µ diverges to infinity, sn(1, ν∗) → 1. Here, as assets depreciate instantaneously, the most central

investor’s buying share equals one.

Private information and information asymmetries prevent us from providing results as tight

as those obtained under complete information, however the next proposition provides an impor-

tant partial result for the connection between an investor’s centrality and buying share.

Proposition 6. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, and two in-

vestor types, θa = (αa, νa) and θb = (αb, νb), satisfying αa > αb. If the investors have the same buying

share, sn(θa) = sn(θb) ∈ (0, 1), the investor with higher screening ability is more central, c(θa) > c(θb).

Unlike in the complete information case, an investor’s centrality and buying share depend on

her asset valuation ν and screening ability α. As a result, it is possible that investors with different

centrality have the same buying share. Among those with same buying share, Proposition 6 states

that centrality is higher for the investor with an information advantage.

Figure 4: Buying share and centrality, under heterogeneous screening ability
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Notes: We set α ∼ U[0, 1], r = 0.1, η = 1/8, µ ∈ {η/5, η, 4η} λ = 4.0, ξ0 = 0.5, and ν ∼ U[.3, 3.5]. For each case, we
normalize the centrality of any investor by dividing by the centrality of the most central.

We show by way of numerical examples that the main results obtained under complete infor-

mation, presented in Proposition 4, apply more generally. Figure 4 illustrates, for different {η, µ}
configurations, that centrality is single peaked in the space of buying shares and as the buying

share moves away from that of the most central investor, centrality falls. Notice also how the plot

confirms the result in Proposition 6: for a given level of buying share, an investor’s centrality

increases with her screening ability α.
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5.3 Screening ability and trading network

Several papers studying financial networks, such as Green et al. (2007), Bech and Atalay (2010)

and Hollifield et al. (2017), document that central traders are not only involved in a large share

of trade volume, as measured by (15), but are also more connected to other investors. A natural

question then, in the context of our theory, is if investors with high screening ability also have a

stronger connection with counterparties.

We use two measures of connectedness: degree and strength. The degree is simply the total

number of unique counterparties an investor has, which we define as

np(θ) = npout(θ) + npin(θ) =
∫

1{q(θ,θ̂)>0}dF(θ̂) +
∫

1{q(θ̂,θ)>0}dF(θ̂), (17)

for an investor of type θ. The out-degree of an investor type θ, denoted by npout(θ), is the number

of unique counterparties that buy from the investor; and the in-degree, denoted by npin(θ), is the

number of unique counterparties that sell to the investor. The degree of the investor is the sum

of the in- and out-degrees.

The following lemma shows that non experts—defined as investors with α = 0—trade with

a smaller set of counterparties than those investors with some screening expertise, and therefore

have a lower degree in the trade network.

Lemma 5. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s} and some investor

type θ ∈ Θ such that ∆(θ) > 0. We have that np(θ) = 1 if α = αI > 0, and np(θ) < 1 if α = 0.

Moreover, if the types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) > 0 and α = 1 > α̂ = 0, then

npout(θ) > npout(θ̂) and npin(θ) > npin(θ̂).

Investors with a negative reservation value do not hold or trade assets in equilibrium. Among

the investors with positive reservation value, an investor trades with every other investor if they

are a screening expert.15 On the other hand, non-experts distort trade due to private information

and do not trade with a set of other investors, np(θ) < 1.

The following Proposition follows from Lemma 5 to show that the average degree of connect-

edness for periphery investors is lower than for core investors.

Proposition 7. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, if α1 = 0 then∫
θ 6∈Θ̄ np(θ) f (θ)dθ∫

θ 6∈Θ̄ f (θ)dθ
<

∫
θ∈Θ̄ np(θ) f (θ)dθ∫

θ∈Θ̄ f (θ)dθ
= 1,

where Θ̄ := {θ ∈ Θ; c(θ) ≥ c̄} and c̄ is defined as in Proposition 3.

Investors at the core of the trade network trade with more unique counterparties than those in

the periphery of the trade network.

15In fact, all investors with α > 0 trade with all other investors in the stationary equilibrium since almost surely
they will be informed with every other trader they meet both on the buy and sell side.
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A shortcoming of the degree measure is that it considers only binary connections. That is, the

measure counts equally all counterparties, not considering the frequency of trade with them. An

alternative is to use strength as measure of connectedness. Instead of simply adding up the num-

ber of unique counterparties of the investor, as we do with degree, the strength measure weights

the connection to each counterparty. This approach is consistent with the method followed in

Physics to study complex networks, as in Barrat, Barthelemy, Pastor-Satorras, and Vespignani

(2004). In our case, a natural weight to use is the probability of trade between two investors,

st(θ) =
φo(θ)

f (θ)
stout(θ) +

φn(θ)

f (θ)
stin(θ)

=
φo(θ)

f (θ)

∫
φn(θ̂)

f (θ̂)
q(θ, θ̂)dF(θ̂) +

φn(θ)

f (θ)

∫
φo(θ̂)

f (θ̂)
q(θ̂, θ)dF(θ̂). (18)

The out-strength of an investor type θ, denoted by stout(θ), is the integral of unique coun-

terparties that buys from the investor weighted by the probability of the trade, which is the

probability the counterparty is a non-owner, φn(θ̂)/f (θ̂), times the probability of trade q(θ, θ̂). Sim-

ilar intuition holds for the in-strength. The strength of an investor type θ is the weighted sum of

the in- and out-strength, where the weights are the probability the investor is a seller, φo(θ)/f (θ),

and the probability she is a buyer, φn(θ)/f (θ).

Since the strength of an investor’s connections are weighed by trade probabilities, it has very

close relationship with centrality. In particular, the following proposition holds.

Proposition 8. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s} and some investor

type θ ∈ Θ such that ∆(θ) > 0. Then, st(θ) = 2Vol
λ c(θ).

An investor’s network strength is interchangeable with their centrality up to a positive con-

stant. In particular, using Proposition 2, we have that the most connected investor according to

network strength must be an expert with α = αI . Hence, our measure of centrality lines up well

with network-based concepts of centrality.

5.4 Screening ability and rents

We close Section 5 by studying the relationship between screening ability and rent extraction.

The theoretical literature has shown that intermediation activity in OTC markets can be linked

to investors with a better ability to extract rents. Our theory also delivers a related prediction,

but only when considering the lifetime discounted value of being able to extract higher rates.

That is, our theory provides that the value functions Vn(θ) and Vo(θ) are increasing in screening

ability α. The next proposition establishes the main result of this section.

Proposition 9. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, an investor type

θ = (α, ν) and θ̂ = (α̂, ν) such that ∆(θ) > 0 and α̂ > α. Then, the value functions Vo and Vn, defined

in equations (5) and (6), satisfy Vo(θ̂) > Vo(θ) and Vn(θ̂) > Vn(θ).
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The results in the proposition follow as an investor with the higher α can always replicate

the choices of an investor with lower α. As a result, the value function of the investor with the

higher α lies above the value function of the investor with the lower α. As intuition suggests, the

proposition provides that the discounted value of rents of experts is higher than the discounted

value of rents of non-experts. Given our previous results that experts populate the core of the

trading network, we can conclude that investors at the core extract the largest discounted rents

from intermediation. A related result is presented in the next lemma.

Lemma 6. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, and let the types

θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then, πo(θ) > πo(θ̂) and (ii) πn(θ) ≥ πn(θ̂),

with strict inequality if ∆(θ) = ∆(θ̂) > 0.

The lemma provides that the expected instantaneous trading profits, πn(θ) and πo(θ), are

increasing in expertise α in partial equilibrium sense—that is, for investors with the same reser-

vation value ∆(θ) = ∆(θ̂). The result does not extend to general equilibrium since increasing

α also changes the reservation value and we cannot sign the relationship between ∆(θ) and α.

As discussed in Section 5.1, ∆(θ) can be increasing or decreasing in α, depending on whether

the investor benefits from screening expertise by either trading frequently or at high prices. The

fact that we cannot sign the dependence of ∆(θ) on α, implies that we cannot sign any other

instantaneous rent object. That is, on top of instantaneous profits πn(θ) and πo(θ), the model

does not have robust predictions about prices, markups, and bid-ask spreads, among others.

6 Empirical Analysis

In this section, we empirically evaluate the model’s predictions regarding the relevance of private

information in shaping trade outcomes and market structure using data on the OTC market for

Credit Default Swaps (CDS). The CDS market is a useful laboratory since, as we discuss in this

section, it features a distinct core-periphery structure. The key mechanism in the model that

drives how an investor’s screening ability determines their role in intermediation is its impact

on their probability of trade. Leveraging regulatory reporting requirements, we first show that

information disclosure increases an institution’s probability of trade with the market’s periphery

but has little to no effect on trade with the core. These results are consistent with our model’s

predictions that the core is comprised of experts while the periphery less so. We then examine

how these effects on the probability of trade shape intermediation in the market as a whole.
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6.1 The CDS data

The market for CDS is large and active, with a quarterly traded notional volume around $2

trillion.16 Generally a CDS contract, called a single-name CDS, involves an agreement in which

the buyer of protection makes regular payments to the seller of protection in exchange for a

contingent payment from the seller upon a credit event (e.g. nonpayment of debt) on a specified

reference entity (e.g. a single corporate bond issue). In our analysis, we focus on trades of US

CDS indexes, which are bundles of US single-name CDS.

We use trade-level CDS data from the Trade Information Warehouse (TIW) of the Depository

Trust and Clearing House Corporation (DTCC). Our sample includes trades from the 1st quarter

of 2013 to the 4th quarter of 2017, a total of 19 quarters or 246 weeks. The Dodd-Frank Wall

Street Reform and Consumer Protection Act requires real-time reporting of all swap contracts

to a registered swap data repository (SDR), such as the DTCC, and makes the reported data

available to appropriate prudential regulators.17 For each transaction, we observe the day of the

trade, the name of the buyer and seller, the reference entity (or series of the index), and other

details of the contract (e.g. notional amount, initial payment, etc.).

We focus on CDS indexes for several reasons: CDS indexes are standardized, unlike single-

name CDS; they are centrally cleared so that counterparty risk does not determine counterparty

choice, as discussed in Du, Gadgil, Gordy, and Vega (2017); and they have a higher frequency

of trade than single-name CDS, while still trading OTC. High trade frequency is particularly

important for us because it allows us to control for unobservable index, institution, and time

period characteristics using fixed effects, whenever it is needed. Finally, our main results focus

on the US because the data only covers trades that either have a party or reference entity regulated

domestically. Since US indexes are mostly traded by US firms or subsidiaries of foreign firms,

they are more likely to be regulated by the Federal Reserve and be included in our data.

A total of 4,124 institutions trade US CDS indexes in our sample period, accounting for

369,527 transactions. We observe trades of 36 US CDS-index classes. The trade activity is concen-

trated in North American CDS indexes (CDX.NA) and Commercial Mortgage Backed Security

Indexes (CMBX). These two classes account for 89% of all US trades in our data. The average

number of trades in a given week for any of the indexes across all institutions is 1,502. Even

though CDS indexes are more liquid than single-name CDS, they are still traded relatively infre-

quently. As a result, our regressions will use observations of trade at a weekly frequency.

The market for CDS indexes is concentrated. To see this, for each institution we calculate

the percentage of all trades in which they participate either as a buyer or seller—consistent with

16See http://swapsinfo.org/.
17See Sections 727 and 728 of The Dodd-Frank Wall Street Reform and Consumer Protection Act. As a prudential

regulator, members of The Federal Reserve System have access to the transactions and positions involving individual
parties, counterparties, or reference entities that are regulated by the Federal Reserve. The raw CDS trade data is
stored at the Federal Reserve Board (FRB) servers and are downloaded from the DTCC regulatory portal.
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the centrality measure used in Section 5—then rank them from largest to smallest. We find that

the top-five institutions participate in 92% of trades. There is also a noticeable discontinuity in

centrality from the top-5th to the top-6th institution. The institution ranked 5th has a centrality

measure 102% higher than the institution ranked 6th, while the institution ranked 4th has a

centrality measure only 19% higher than the institution ranked 5th. Based on these findings, we

associate the top-five institutions in the data with the set of core institutions in our theory.

6.2 The role of information in shaping up trade outcomes

Our empirical strategy is the following. A subgroup of investors, which includes managers from

banks, insurance companies, broker-dealers, pension funds, and corporations, are required to

file form 13-F to the Securities and Exchange Commission (SEC). The form contains the end-

of-quarter holdings of all securities regulated by the SEC, which mostly consist of equities that

trade on an exchange and equity options, but also shares of closed-end investment companies

and certain debts. The SEC makes the 13-F filing public immediately after it is filed, and so

market participants know detailed portfolio information about 13-F filers. We then study how a

13-F filing impacts an investor’s probability of trade with core versus periphery counterparties

in the OTC market for CDS indexes.

CDS are a primary way for institutions to hedge against risk in their portfolio, so implicit

in our empirical strategy is the interpretation that a 13-F filing (at least imperfectly) reveals

information about an investor’s trading needs in the CDS market. This interpretation has been

supported in the literature both theoretically and empirically. For instance, the seminal model of

Merton (1974) illustrates that a firm’s credit spreads and equity prices are fundamentally linked

through the firm’s optimal choice of capital structure. If credit and equity assets have correlated

returns, then the demand for an asset written on a firm’s debt, such as a CDS, is correlated with

the holdings of their equity—which the 13-F reveals. Empirically, papers such as Campbell and

Taksler (2003), Blanco, Brennan, and Marsh (2005), Lonstaff, Mithal, and Neis (2005), Zhang,

Zhou, and Zhu (2009) and Forte and Pena (2009), have found a correlation between debt and

equity returns.

6.2.1 Model predictions about the effects of a 13-F filing

Before moving to the empirical test, we develop a set of model predictions about the effects of

information disclosure by 13-F filings, summarized in Proposition 10. We consider a version

of the baseline model above, but assume that a fraction of investors, which we label as “13-F

investors", have to publicly disclose information at random future dates through a 13-F filing.

The distribution of types across 13-F and non-13-F investors is given by F13F and Fn13F, with both

satisfying the same assumptions we imposed on the distribution F. We use ω13F ∈ [0, 1] to denote
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the fraction of 13-F investors, so that F = ω13FF13F + (1− ω13F)Fn13F. It is common knowledge

who the 13-F investors are but not their utility type.

Starting from some known future date t0, each 13-F investor draws a filing window [T0, T0 +

T], with T0 ≥ t0 and T > 0, where T0 is drawn from a Poisson distribution with parameter γ > 0.

Investors filing dates are independent and become known in t0. At time T0, the investor chooses

the filing date T̃0 = T0 + t̃, where t̃ ∈ [0, T] denotes the filing delay. We allow investors to delay

the 13-F filings to be consistent with the 45-days delay window given by the SEC, described more

in Section 6.2.2.

The information content in a 13-F filing is imperfect. In any meeting after an investor’s fil-

ing, the 13-F report perfectly reveals the filer’s utility type to the counterparty with probability

ρ ∈ (0, 1]. With probability 1 − ρ, the 13-F report is uninformative. This shock is indepen-

dent and identically distributed across 13-F investors and meetings, and independent from other

shocks. An equilibrium is defined in a similar fashion to that provided in Definition 1 with a key

difference we consider out-of-steady-state equilibrium, so objects are time dependent.

We are interested in studying how a filing impacts a 13-F investor’s probability of trade with

a “core” investor relative to a “periphery” investor. We define the set of core investors as those

with a centrality measure in the top-p percentile as defined in Proposition 3. The following

proposition establishes our main set of testable predictions regarding the effects of information

disclosure on trade probability.

Proposition 10. In an equilibrium, all 13-F investors are weakly better off delaying the filing (choosing

t̃ = T), and the 13-F investors with strictly positive probability of trade are strictly better off delaying the

filing date. Moreover, when a 13-F investor with strictly positive reservation value files the 13-F, there is

(i) a strict increase in her probability of trade with periphery investors,

(ii) no change in her probability of trade with core investors, and, as a result,

(iii) a higher increase in trade probability with periphery investors than with core investors.

The first result in Proposition 10 is that information revelation hurts a 13-F investor when she

trades. Thus, if a 13-F investor expects to trade in the filing window, she delays filing up to the

maximum allowed. In the data, most institutions delay their filing up to 45 days allowed.

The second result is divided into items (i)-(iii). Items (i) and (ii) establish that information

disclosure weakly increases an investor’s probability of trade. Intuitively, more information

reduces distortions that follow from information asymmetries. Further, and more importantly,

part (iii) establishes that information disclosure disproportionately increases an investor’s probability of

trade with the periphery relative to the core. This result stems from the key prediction of our model

that those investors who endogenously populate the core have an informational advantage. In

turn, public information disclosure will impact them less. The result does not rely on the utility
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type or screening ability of the 13-F investor, or in turn their centrality.18 We test these predictions

in the remainder of the section.

6.2.2 The 13-F data

Congress passed Section 13(f) of the Securities Exchange Act in 1975 in order to increase the

public availability of information regarding the security holdings of institutional investors. Un-

der Section 13(f), any registered investment manager with discretion over its own or a client

account with an aggregate fair market value of more than $100 million in Section 13(f) securities

must file a 13-F form. The 13-F form lists the holdings of Section 13(f) securities, which primarily

includes US exchange-traded stocks (such as those traded on the NYSE and NASDAQ), stock op-

tions, shares of closed-end investment companies, and shares of exchange-traded funds (ETFs).19

Importantly, CDS are not included in the list of 13(f) securities.

The SEC makes 13-F filings publicly available through its Electronic Data Gathering, Analysis,

and Retrieval (EDGAR) program. The identity of the institutions that must file a 13-F form are

known by market participants. This implies that when a report is filed, counterparties of 13-

F filers possess detailed portfolio information when trading. Since CDS indexes are a way for

institutions to hedge against risk in their portfolio, we interpret the information provided to the

market in the 13-F form as information related to the trading needs of investors on CDS.

When filing a 13-F form, institutions are required to list their portfolio ownership of all

Section 13(f) securities as of the last trading day of each quarter, which we label the report date.

However, institutions have the discretion to delay reporting and file a 13-F form up to 45 days

past the report date. We label the day in which institutions actually file the filing date. The 45-day

delay rule is designed to protect investors from copycatting and front-running. From EDGAR,

we observe the filing date and the unique Central Index Key (CIK) of the filing manager, which

gives us the institution name and is used to link filing institutions to those trading CDS.

6.2.3 The merged dataset

Table 1 provides summary statistics of the merged dataset. Details on merging are available in

Appendix B.1. We consider two samples. Our preferred sample includes only institutions that

filed at least once in the sample period, which we label as filers, and trades of US CDS indexes.

Since in our regressions we control for fixed effects at the institution level, narrowing the sample

to include only filers is enough to identify the effect of a 13-F report in the time period around

18The predictions of Proposition 10 are also likely robust to adding additional heterogeneity across investors, for
instance in their contact rates, λ. However such a model would predict differences in the probability of trade across
investors with the same screening ability but different contact rates. In this case, the results would need to be re-stated
by normalizing by the unconditional probability of trade with core and periphery investors.

19See https://www.sec.gov/fast-answers/answers-form13fhtm.html for a complete list of 13(f) securities and other
institutional details.
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a filing. We provide more details on identification in the next section. We also report results for

the sample that includes all traders, regardless of filing status.

Table 1: CDS trades and 13-F filings, summary statistics

Sample

US indexes, US indexes,
filers all institutions

Number of institutions 52 4,124

% that file in every quarter 51.9 0.7

Number of trades 133,901 369,529

% involving two filers 4.6 1.7

% in which at least one institution filed in prev. week 2.2 0.8

% in which at least one institution filed in previous 2 weeks 4.3 1.6

average trades per week 463.0 1,502.1

average trades per week, per institution 8.9 0.4

Number of index-classes traded 36 36

Of a total of 4,124 institutions trading US CDS indexes in our sample period, 52 filed a 13-F

in at least one quarter. Most institutions are not filing 13-F reports. Additionally, not all filing

institutions filed in every quarter in our sample; out of the 52 institutions that filed in at least one

quarter, a little over half filed in every quarter. To capture any endogeneity that concerns selection

into filing a 13-F, we will show results that control for fixed effects at the institution-quarter level.

That is, we will only exploit variation within a quarter around filing dates.

Filers make up a small fraction of institutions trading CDS indexes, but they participate in a

large fraction of trades. Of the 369,527 CDS-index transactions we observe, 36.24% involve at least

one filer. This is in line with the idea that 13-F filers tend to be larger institutions, and the amount

of trade activity provides us with enough observations for identification. Although large, almost

all filing institutions are not among the most central in terms of trade volume for the overall

sample of institutions trading CDS. In fact, only a small fraction of trades of filers include a filer

among the top-5 investors in terms of trade volume. The model predictions regarding 13-F filing

hold both for periphery and core investors, as stated in Proposition 10, but the low fraction of

trades by filing investors that are also central provide reassurance regarding the lack of relevance

of potential mechanisms linked to the market volume of the filing institution.

Typically, only one of the two participants in a transaction is a filer; only 4.6% involve a trade

between two filers in the main sample. Among the trades involving at least one filer, the share

in which buyer or seller filed is split roughly even. Table 1 also shows the extent of trades we

observe in the time period recently following a 13-F report. Since our theoretical predictions are

all local in nature, our tests focus on trading activity during this time period. Of the total trades

28



we observe, 0.81% involve an institution that filed a recent 13-F report, that is within the previous

week, and 1.56% involve an institution that filed within the previous two weeks.

As mentioned above, institutions have the option to delay filing the 13-F form for up to 45

days past the report date. We define a delay as the difference in days between the report and

filing date. Figure 5 presents the distribution of delays across investors. All institutions delay

their filings, with a minimum delay of 6 days. Also, 18% of filings have a delay over the 45-day

limit. This can occur for two reasons. If day 45 falls on a weekend or holiday the deadline is

extended until the following business day. Institutions can also apply to extend the standard

delay period; however, delaying over 48 days is rare and accounts for only 5.4% of filings.

Figure 5: The distribution of delays

Notes: Sample includes all filings by institutions trading US credit default swap indexes by regulated institutions or those
trading CDS indexes on regulated institutions in the sample period, 2013Q1-2017Q4. The figure presents the histogram of
filing delays, defined as the difference between the actual and official filing dates.

Figure 5 reveals that most filings occur around the 45-day limit: 66% of delays are in a

window of 42 to 48 days. Delaying filing until the end of the report period is consistent with our

Proposition 10 which states that investors strategically delay their filings. Notwithstanding this,

our model cannot explain variation in delays. Although institutions file form 13-F for motives

exogenous to CDS trading, it is possible that delaying a filing is correlated with the institution’s

CDS trading activity. Section 6.2.6 discusses how alternative theories relate to our empirical

results and, in particular, discusses theories with endogenous delays.

6.2.4 The effects of a 13-F filing on CDS trade

In this section, we test the predictions described in Proposition 10 that a 13-F filing (i) strictly

increases the probability of trading with periphery institutions, (ii) weakly increases the proba-

bility of trade with core institutions, and (iii) shifts trade towards periphery institutions. To do
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so, we estimate the following linear model:

Yijt = β
Fj,t−1

Frequency
+ Fixed Effectsjit + εjit (19)

where i denotes a CDS-index class (e.g. CDX.NA.IG), j denotes an institution, and t denotes a

time period, which we set to be equal to a week. The variable Yijt represents the outcome of

interest which is one of two possible dummy variables, Dp
ijt, Dc

ijt, where p stands for periphery

and c stands for core. The variable Dp
ijt is a dummy for a trade by institution j involving CDS

index i in week t trading with any periphery institution. Similarly Dcore
ijt is a dummy for trade by

institution j involving CDS index i in week t trading with any core institution.

The coefficient of interest is β—the coefficient on the dummy variable Fj,t−1, which equal to

one if institution j filed a 13-F report in the week previous to t. As we discuss in subsection 6.2.1,

we normalize the dummy Fj,t−1 in each regression by the frequency of trade in the sample (i.e.

frequency of trade involving core and frequency of trade involving periphery investors). This

normalization allows us to control for other determinants of trade centrality, such as trade speed

as discussed in Üslü (2019) and Farboodi, Jarosch, and Shimer (2017), that would differentially

affect the probability of trade with core relative to periphery investors. Under the normalization,

we can compare the coefficient β across specifications.

Identification comes primarily from (i) comparing trade activity by the same institution in

weeks following a report versus not, and (ii) comparing trades within a week across institutions

that filed in the week before versus those that did not. For (i) we have variation in the weeks and

indexes that institutions trade relative to the weeks where they file. For (ii) we have variation in

the weeks where different institutions file. The large transactional data allow us to control for

many unobservable correlations using a combination of fixed effects on institutions, weeks and

indexes. One potential concern is endogeneity bias that stems from the filing requirements of

Form 13-F causing selection on unobservables that are correlated with trading activity in CDS

markets. This type of bias is unlikely to effect our results since the number of institutions required

to file Form 13-F is considerably larger than those that file and trade CDS indices.20 However, we

address this concern by narrowing our baseline sample to only filers.

Table 2 reports our baseline results. Column (1) includes fixed effects for week-index pairs

and institutions, and restricts the sample to filers and US indexes. We find that the probability of

trade with periphery institutions increases by 22.5% in the week after a 13-F filing. We also find

that the probability of trade with core institutions increases, by 9.6%. Both effects are statistically

significant and positive, consistent with parts (i) and (ii) in Proposition 10; a 13-F report leads to

increased trading activity in the week following the report. However, part (iii) of 10 suggests that

the information revelation should shift the probability of trade towards periphery institutions.

20For instance, there are 5,560 financial institutions that filed at least one Form 13-F between 2013 and 2017, while
only 52 institutions in our dataset trade CDS indices and filed form 13-F at least once in the same sample period.
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Table 2: Impact of a 13-F filing on trade

US index, filers All index, filers US index, all inst. US index, filers

(1) (2) (3) (4)
Trade with Periphery, βp 0.225*** 0.125*** 0.501** 0.137*

(0.075) (0.046) (0.198) (0.074)
R-squared 0.176 0.167 0.107 0.198
Trade with Core, βc 0.096* 0.095** -0.002 -0.010

(0.054) (0.038) (0.128) (0.053)
R-squared 0.182 0.177 0.069 0.204
Test on difference, βp − βc 0.129* 0.030 0.498** 0.147**

(0.073) (0.042) (0.209) (0.072)
Fixed Effects

Week − index yes yes yes yes
Institution yes yes yes no
Institution − quarter no no no yes

Observations 460,512 1,100,358 36,522,144 460,512

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS
indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4. The
independent variable is a normalized dummy, where the dummy is equal to one if institution j filed a 13-F in the
previous week. The two dependent variables are dummies if institution j traded CDS index i in week t with a
periphery and core institution, respectively. Test on difference: tests whether the difference in the coefficients is
equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The third panel of Table 2 shows the results of testing the difference in the first two coefficients.

We find that the difference is positive and significant; a 13-F report increases trade with periphery

institutions by 12.9% relative to core institutions.

Columns (2) and (3) in Table 2 test for the robustness of our results to the sample selection.

In column (2) we extend our baseline sample to include non-US indexes, and in column (3) we

extend our sample to also include all institutions, regardless of filing status. The results remain

consistent with those presented in column (1). Specifically, extending the sample to include all

institutions implies the effects of a 13-F on trade with core institutions disappears and leads to a

nearly 50% increase in the probability of trade with periphery institutions.

In column (4), we report results that control for fixed effects at the institution-quarter level.

In our sample of filers not all institutions filed in every quarter. This may be resulting from

either an error in our process of matching 13-F reports to CDS trades or in variation in the

size the institution’s 13(f) portfolio from quarter to quarter that could, in principle, bias in our

results.21 Adding institution-quarter fixed effects address both of these concerns by limiting our

identifying variation to weeks within an institution’s filing quarter. Doing so leads to results

that are also in line with columns (1)-(3). A 13-F report increases the probability of trade with

periphery institutions relative to core institutions by 14.8%.

21For instance, we may be unable to recover the filing date if the institution manager changes since the last filing –
as filing is manager specific– or if she files the report jointly with another manager, which can occur if both managers
belong to a bigger corporation.
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Table 3: Impact of 13-F filing on trade, varying lag lengths

1 week 2 weeks 3 weeks 4 weeks
Fj,t−1 Fj,t−2 Fj,t−3 Fj,t−4

(1) (2) (3) (4)
Trade with Periphery, βp 0.137* 0.146** 0.029 -0.058

(0.074) (0.058) (0.052) (0.049)
Trade with Core, βc -0.009 -0.014 -0.006 -0.037

(0.053) (0.042) (0.038) (0.035)
Test on difference, βp − βc 0.147** 0.160*** 0.035 -0.021

(0.072) (0.057) (0.051) (0.048)
Fixed Effects

Week − index yes yes yes yes
Institution − quarter yes yes yes yes

Observations 460,512 458,640 456,768 454,896

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those
trading CDS indexes on regulated institutions, that filed a 13-F report at least once in the sam-
ple period, 2013Q1-2017Q4. The independent variables, (1) Fj,t−1/Frequency, (2) Fj,t−2/Frequency, (3)
Fj,t−3/Frequency, and (3) Fj,t−4/Frequency are normalized dummies, where the dummies are equal to
one if institution j filed a 13-F within the previous week, two weeks, three weeks, and four weeks re-
spectively. The two dependent variables are dummies if institution j traded CDS index i in week t with
a non-top-5 and top-5 institution, respectively. Test on difference: tests whether the difference in the
coefficients is equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

In Table 3, we examine the effect of a 13-F report on trade in the following one-, two-, three-

and four-week windows. While Proposition 10 only concerns the effects of a 13-F in the time

period immediately following a report, we are interested in investigating the persistence of the

shock. Column (1) repeats the results from column (4) in Table 2, which controls for fixed effects

by week-index and institution-quarter. The positive effect of 13-F filing on the probability of

trade with periphery institutions holds up to two weeks after the filing, but it is not present in

the three- and four-week windows. The effect of a 13-F on the probability of trading with a core

institutions remains insignificant and with a point estimate close to zero. The difference between

the two, or the effect of a 13-F on the probability of trade with periphery versus core institutions

is significant and positive up to two weeks after the filing date, with a difference in the change

of trading probability of nearly 15%, but vanishes after two weeks. These results are consistent

with our theory. As we increase the window length, we also increase the number of trades that

we consider as related to filing a report. In theory, by doing so we are adding trades that are less

correlated with the revelation of information, thus adding noise and eventually breaking the link

between trade activity and filing.

While we find a significant impact of a 13-F filing on trade with periphery institutions, we

find no effect on trade with core institutions. The coefficient estimates for trade in the one or

two weeks after a 13-F filing versus before are statistically the same (as shown in the middle

panel of Table 7). We test the difference in the probability of trade and find a significant, positive
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impact of a 13-F on trade with periphery institutions relative to core institutions, which verifies

the estimates effects from Tables 2 and 3.

Consistent with Proposition 10, most institutions filing form 13-F delay their filing as much

a possible, filing close to the 45-day limit (66% of filings have a delay between 42 and 48 days).

While our model can account for most delays, it cannot account for delays of shorter duration,

as the model implies that institutions have strong incentives to delay filings up to the maximum

allowed. For filings with short delays, this raises the question whether the timing of a filing is

correlated with particular trades in CDS that the institution intends to do around the filing date.

One way to address these concerns is to study the effect of filing on trade activity around the

maximum filing delay. Since the 45-day constraint applies to all institutions filing form 13-F in

any quarter and since the 45th day of any quarter is arguably uncorrelated with any particular

investors’ trading motives in CDS, we can use the delay limit as exogenous variation in filing.

Table 6 in Appendix B.2 repeats our baseline regression, but restricts to trades with filing delays

of 42 to 48 days.22 As the table shows, we find that our results strengthen in this case, providing

reassurance of the relevance of the information mechanism in determining trade outcomes.

Another concern is that institutions simply trade more around filing events and that the

dummy for trade after filing is capturing this effect. In Table 7 in Appendix B.3 we study this,

by extending the empirical model in 19 to account for trading activity in the week or two weeks

prior to filing. Indeed, as the table shows, we find that there is a weakly higher trading activity

just before filing compared to the rest of the quarter. However, we still find that trading activity

increases just after a 13-F filing compared to just before and that the increase in explained entirely

by trades with periphery institutions.

6.2.5 Information revelation and market liquidity

In our theory, screening ability is only relevant as a result of trading frictions that generate

dispersion in the valuation of assets, ∆(θ), given by equation (7). Under the extreme case where

λ is zero, an investor’s valuation is driven entirely by their utility flow ν since they have no

outside options in trade. Alternatively, under the opposite extreme in which investors can buy

and sell assets immediately in a competitive market, the distribution of valuations would collapse

to the competitive equilibrium price that is independent of any given investor’s utility flow. In

this case, screening ability becomes irrelevant.

As trading frictions vanish with λ → ∞, investors place less weight on their own flow value

and greater weight on the expected gain they receive from buying and then selling assets, or, the

gain from intermediation. However, the gain from intermediation becomes smaller as trading

frictions vanish since all investors can more easily intermediate. We illustrate these effects by

22This window represents filing in the week of the deadline. Delays over 45 days occur because the deadline falls
on a weekend or holiday.
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Figure 6: The effects of trading frictions on dispersion in asset valuations and intermediation
rents (left) and the effects of 13-F filing (right).
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Notes: We set r = 0.05, η = µ = 1/8, ρ = 0.8, ξ0 = 0.5, α ∼ U[0, 1], and ν ∼ U[.3, 3.5].

way of numerical example in Figure 6. The left panel shows that as λ increases, there is a

decrease in the dispersion of the expected gain from intermediation, πo(θ) − πn(θ), and as a

result also of asset valuations, ∆. This creates a decline in price dispersion and a decline in the

value of having the ability to learn the private information of a trade counterparty.

When asset valuations become more condensed, the distortions caused by private informa-

tion are reduced and screening ability becomes less relevant in determining trading outcomes.

We should expect that the impact of revealing private information to the market—for example,

through a 13-F filing—is mitigated. We illustrate this result in the right-hand panel of Figure 6.

The figure shows the effect in our model when we look at the impact in trade probabilities if one

investor were to file a 13-F form, where we set the probability that a 13-F filing is informative

to be ρ = 0.8. When trading frictions are high, the impact on the probability of trade with the

periphery is high. However since the core is comprised of experts with α = 1, the impact on

trade with them is zero. As λ increases, the impact on the probability of trade with the periphery

falls as well as the differential effect between core and periphery. Screening ability becomes less

relevant in determining a market’s structure when assets are easily traded.

We explore these effects in the market for CDS indexes in Table 4, where we proxy for the

extent of trading frictions using trade volume as a measure of market liquidity. We repeat the

analysis in 6.2.4 separately across three CDS-index classes with varying degrees of market liq-

uidity. IHS Markit’s CDX index class on North American entities is by far the most liquid in

terms of trading frequency, accounting for roughly 65% of trades in our sample. The second

most liquid class is Markit’s CMBX indexes referencing commercial mortgage-backed securities,

which accounts for a much smaller fraction of trades (23% of trades). The group "Other" accounts
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for the remainder and includes indexes that trade infrequently, such as those that reference sub-

prime mortgage backed securities or municipal CDS, swaps referencing interest and principal

components of agency pools, or the Dow Jones CDX family.

Table 4: Impact of 13-F filing on trade, by CDX Index Class

CDX CMBX Other CDX CMBX Other
(1) (2) (3) (4) (5) (6)

Percent of Trades 65.6% 23.4% 11% 65.6% 23.4% 11%
Dependent Variable: Trade with Periphery, βp

Filed in prev. week, Fi,t−x 0.091 0.292** 0.594*** 0.053 0.178* 0.353*
(0.089) (0.116) (0.188) (0.089) (0.102) (0.185)

R-squared 0.448 0.317 0.111 0.478 0.483 0.148
Dependent Variable: Trade with Core, βc

Filed in prev. week, Fi,t−x 0.122 0.064 0.207* 0.037 -0.045 0.034
(0.077) (0.072) (0.123) (0.074) (0.068) (0.122)

R-squared 0.392 0.362 0.105 0.455 0.452 0.135
Dependent Variable: Difference, βp − βc

Filed in prev. week, Fi,t−x -0.031 0.228* 0.388** 0.016 0.223** 0.318*
(0.092) (0.121) (0.189) (0.091) (0.111) (0.187)

R-squared 0.164 0.240 0.068 0.216 0.111 0.187
Fixed Effects

Week − index yes yes yes yes yes yes
Institution yes yes yes no no no
Institution − quarter no no no yes yes yes

Observations 38,376 102,336 268,632 38,376 102,336 268,632

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS indexes on
regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4. The independent variable,
Fj,t−1/Frequency, is a normalized dummy, where the dummy equals to one if institution j filed a 13-F within the week
t− 1. The two dependent variables are dummies if institution j traded CDS index i in week t with a periphery and core
institution, respectively. Test on difference: tests whether the difference in the coefficients is equal to zero. Standard errors
are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

We find that as an index is traded more frequently in the market, the impact of a 13-F on

trade with the periphery is diminished, as well as the effect relative to trade with the core. Using

week-index and institution fixed effects, columns (1)-(3), we find that a 13-F filing increases the

probability of trade with the periphery by 9.1% in the market for CDX, 29.2% in the market for

CMBX, and 59.4% in the remaining markets for low liquidity indexes. We find a differential

impact on trade with the periphery relative to the core of 22.8% and 38.8% in the less liquid

markets for CMBX and other indexes, but not in the market for CDX. The results are unchanged

if we control for institution-quarter fixed effects, shown in columns (4)-(6).

In summary, Table 4 illustrates that the impact of private information on market structure is

more relevant for less liquid markets. If trading delays are large, then experts posses a large gain

in intermediating assets.
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6.2.6 Discussion of empirical results

In the previous section, we provided evidence of the mechanism through which our model gen-

erates endogenous intermediation. In this section, we draw a comparison to the literature on

intermediation in OTC markets and ask if other mechanisms could explain our empirical 13-F

results. We argue that the theory we outline above is the only existing framework that can ra-

tionalize the results. It is important to highlight that we do not claim that our mechanism is the

only determinant of market structure, but our results suggest it is an empirically relevant one.

We begin by noticing that most theories of intermediation in OTC markets assume complete

information about asset valuations. For example, Farboodi, Jarosch, and Shimer (2017), Farboodi,

Jarosch, and Menzio (2017) and Hugonnier et al. (2014) have models of complete information.

Naturally, these theories predict information disclosure has no impact on the probability of trade.

The only way to potentially rationalize the effects of 13-F filings in Table 2 under complete

information is if filings impact something other than information about valuations. One such

example is if filings affect the meeting technology, for instance if institutions use filings to signal

their desire to trade and so are more easily located. In Appendix B.4, we argue that such a model

is inconsistent with our empirical results as well. First, filers buy and sell actively before and

after filings events (Table 7) and that our baseline results in Table 2 also hold when splitting the

sample between buyers and sellers (Table 9). These results are inconsistent with the idea that

institutions file to signal that they want to buy or sell. Second, our baseline results also hold if

we restrict attention to filing events around the end of the filing window, as determined by the

SEC. A model of signaling cannot rationalize this—there should be no strategic motives for filing

when there is no choice of whether to delay the filing or not. This test is presented in Table 6.

In terms of theories with private information about private values, the literature on infor-

mation disclosure has proposed a theory about the effects of filing 13-F and strategic delay.

Christoffersen, Danesh, and Musto (2015) argue that institutions primarily delay filing to prevent

front-running—a situation in which other investors, upon observing the portfolio shares of the

reporting institution, infer their future trades and attempt to execute a trade in the same direction

before, obtaining a better price. Institutions have an incentive to delay filing a 13-F so they can

execute their trading without competition from front-runners. Table 2 finds that the probability

of trade increases in the time period following a 13-F report. However, front-running implies that

the probability of trade would decrease in the time period following a report. Hence, it would

lead to bias in the opposite direction of our results.

Our empirical results are also likely inconsistent with theories building on private information

about common values—such as in the lemon’s problem. First empirically, if common value

information was driving the effects of 13-F filings then we should expect a filing to on average

not only impact the trading activity of the filer, but also to impact trading activity between non-

36



filers. For instance revealing information about the underlying default probability of assets in

a CDX index —a common value— should affect all trade for that index and not just the filer’s.

Our regressions control for this possibility by including week-index fixed effects that capture

changes across weeks in trade volume for a given index. Even if common value information

disproportionately increases trading with the periphery, our 13-F results state that there is an

even larger increase for the institution that filed relative to the rest of the market. Our effects are

further strengthened when we include trade activity between non-filers in column 3 of Table 2.23

In terms of theory, the literature on common value problems in decentralized asset markets

has not studied endogenous intermediation. However, we can ask to what extent does revealing

common value information increase the probability of trade? To do so, we focus in the effects in

a model with pooling equilibria, as would arise in our environment. Pooling equilibria are fun-

damental to models of uniformed intermediaries, such as the literature following Glosten and

Milgrom (1985), or models with random search and bilateral trade, such as Chiu and Koeppl

(2015). Consider the case of two asset qualities, good and bad. Uninformed bid prices would

either be set high in order to buy both good and bad assets or, if the lemons problem is severe

enough, set low to only buy bad assets (or no assets at all). A similar intuition holds for un-

informed ask prices. In this case, revealing information about the common value would only

increase the probability of trade if the market was initially in a freeze —either only bad assets

trade or no assets at all. However in our sample, CDS indexes are actively traded between both

core and periphery institutions, and there is no apparent disruption in the market. It seems un-

likely that this is what temporarily increases in the probability of trade with the periphery after

a filing.24

6.3 Intermediation in the CDS-Index Market

We close by illustrating that intermediation in the market for CDS indexes reflects the form of

intermediation in our environment, described in Section 5. Consistent with the theory, we find

that institutions that are most central also act as middlemen by equally buying and selling assets,

and are more connected—possessing a larger network of trading partners. We also show that

our 13-F results also hold along these other measures of intermediation.

23We also ran a version of the regressions in which we assign non-filers random filing dates from the sampling
distribution and examine if a ‘fake’ filing altered the probability of trade – essentially a placebo test – and found no
effects. These results are available upon request.

24In a different environment in which investors can post prices and direct their search, a separating equilibrium can
emerge, as in Guerrieri et al. (2010) or Guerrieri and Lorenzoni (2011). In equilibrium, investors with high quality
assets signal their type by posting high prices and selling with a lower probability. 13-F filings could potentially serve
a signalling role outside of the posted price, that could increase the probability of trade. Still, we should expect an
increase in the probability of trade for all investors with the same (high quality) asset, which we do not find.
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6.3.1 Centrality and middleman activity

As in Section 5.2, institutions’ role as a middlemen is characterized by their buying share. In

the CDS data, this corresponds to the share of trades in which an institution buys versus sells

protection on a CDS index.

Figure 7: Histogram of institutions’ buying share (left) and its relation to their centrality (right)

Notes: Sample includes trades of US CDS indexes by regulated institutions or those trading CDS indexes on regulated
institutions in the sample period, 2013Q1-2017Q4. The left panel presents the histogram of buying shares, where the buying
share of investor i is defined as the fraction of trades involving investor i where she acquired a CDS. In the right panel, we
compute the absolute value of an institution’s buying share minus the buying share of the most central investor. The (red)
crosses present these values for the top 5 investors. The blue triangles bin these absolute values by centrality of non-top 5
investors, weighted by centrality of the investors. The vertical slashed lines show the 25th to 75th percentiles of the absolute
value of (buying share - buying share of most central investor) for each bin.

The left panel of Figure 7 presents a histogram for the buying share across institutions in

our sample. The top-5 institutions in terms of volume are all heavily involved in middlemen

activity, with buying shares close to 1/2. Among non top-5 institutions, there is substantial

heterogeneity in middleman activity. Many non top-5 institutions engage only on one-side of the

market: 45.3% of the institutions have buying share below 0.4 and 39.9% of them have buying

share over 0.6. However, this also implies that there are many non-top-5 institutions that serve

as middlemen, with buying shares between 0.4 and 0.6. This heterogeneity is consistent with our

theory that features both central and non-central middlemen, however cannot be supported in

random search models with complete information where, by construction, an investor’s buying

share is equal to 0.5.

Also consistent with our theory (Proposition 4 and Figure 4), the right panel of Figure 7

shows that as an investor’s buying share moves away from that of the core (depicted as red

crosses), their centrality falls. We bin non-top 5 institutions according to their centrality. The

group average is shown as blue triangles and the within-group interquartile range is shown by

the dashed-grey lines. The least central institutions tend to have the largest deviations from the

buying share of the most central investor. These institutions also have the greatest heterogeneity

in buying versus selling. As centrality increases, institutions tend to buy and sell more equally.
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Above a centrality threshold all institutions tend to serve as middlemen.

Table 5: Impact of a 13-F filing on trade with middlemen

0.4 ≤ Buying share ≤ 0.6 0.2 ≤ Buying share ≤ 0.8

(1) (2) (3) (4)
Trade with Periphery Middlemen, βp 0.278*** 0.184** 0.241*** 0.150**

(0.079) (0.078) (0.076) (0.076)
R-squared 0.161 0.186 0.170 0.191
Trade with Core Middlemen, βc 0.096* -0.009 0.096* -0.010

(0.054) (0.053) (0.054) (0.053)
R-squared 0.182 0.204 0.182 0.204
Test on difference, βp − βc 0.182** 0.193** 0.144* 0.160**

(0.076) (0.076) (0.052) (0.074)
Fixed Effects

Week − index yes yes yes yes
Institution yes no yes no
Institution − quarter no yes no yes

Observations 460,512 460,512 460,512 460,512

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS
indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4. The
independent variable is a normalized dummy, where the dummy is equal to one if institution j filed a 13-F in the
previous week. The two dependent variables are dummies if institution j traded CDS index i in week t with a
periphery and core institution, respectively, who have a buying share in [0.4, 0.6] in columns (1)-(2) or [0.2, 0.8] in
columns (3)-(4). Test on difference: tests whether the difference in the coefficients is equal to zero. Standard errors
are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The theory goes one-step further, predicting that experts tend to be high-volume middlemen

whereas non-experts tend to be lower-volume middlemen, as can been seen in Figure 4. If so,

we can again use trading activity around 13-F filings to investigate if information revelation has

heterogeneous effects on trading with institutions in the sub-sample of middlemen. In Table 5,

we report the effect of filing 13-F on trade with middlemen, those institutions with intermediate

buying share. In the first two columns, we show the effect on trade with institutions with buying

share between 40% and 60%. In the last two columns, we expand the definition of a middleman to

buying share between 20% and 80%. The table shows that a 13-F filing increases an institution’s

probability of trade with periphery middlemen, but has a weaker or zero effect on trade with core

middlemen. These results with those in Table 2 suggest that institutions with an informational

advantage not only serve as middlemen but also intermediate a high volume of trade, consistent

with the predictions of our theory.

We note that these predictions cannot be supported in random search models of market

structure built under complete information. There, by construction, an investorâs buying share

is equal to 0.5, independently of their share of aggregate trade volume.
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6.3.2 Centrality and the number of counterparties

Our model predicts that experts with α = 1 will not only have high centrality but also have

the most extensive trading network measured as either as the number of unique counterparties

(Proposition 7) or the number of counterparties weighted by trade volume (Proposition 8). The

left panel of Figure 8 depicts the relationship between an institution’s centrality, c(θ), and its

number of unique counterparties relative to those of the most central investor, np(θ)/np(θ∗).

The top-5 institutions are illustrated in red crosses while the non-top-5 institutions are binned

by centrality and illustrated as blue triangles. The figure shows that top-5 institutions have a

significantly larger amount of trade counterparties than institutions in the periphery. Even those

institutions just outside the top-5 have a substantially lower number of connections compared

to the top-5 institutions. Given our 13-F results that suggest the top-5 have an advantage in

screening ability, these results also suggest that this advantage leads these institutions to trade

with an extensive group of counterparties.

Figure 8: Centrality, c(θ), and number of counterparties, np(θ)

Notes: The sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS indexes
on regulated institutions in the sample period, 2013Q1-2017Q4. In the left panel, for each institution we compute their share
of trade counterparties, relative to the share of trade counterparties of the most central investor. The (red) crosses present
these values for the top 5 investors. The blue triangles bin the shares by the centrality of non-top 5 investors, weighted by
centrality of the investors. In the right panel, we bin trades by the centrality of the investor, and we compute the share of
unique counterparties for trades in a bin, relative to the share of unique counterparties of the bin with highest centrality.
Because all trades of an investor have the same centrality, there is no unique way to bin them. Therefore, we repeat the
procedure described above 1,000 times, and we take averages across trials.

A potential concern is that a mechanical effect explain the results in Figure 8: when an

institution trades more, they may naturally trade with more counterparties. The right panel of

Figure 8 controls for this by ranking trades by the centrality of their institution, then binning

such that each bin present in the figure has the same number of trades. Hence, the max possible

number of counterparties in each binned-group are equal. The same strong positive relationship

between the number of trade counterparties and centrality remains.

These predictions also cannot be supported by random search models of market structure
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building on complete information, as in these models the trade network is complete for all in-

vestors. Overall, Sections 6.2 and 6.3 provided strong evidence of the relevance of private infor-

mation in explaining trade outcomes in OTC markets, and its relevance in shaping up several

different dimensions of the core-periphery notion of market structure.

7 Concluding remarks

When trading in a bilateral meeting, investors must gauge the willingness-to-pay of their trade

counterparties. Differential ability in gauging this information, which we call screening exper-

tise, can affect the functioning and structure of decentralized markets. We propose a theory of

financial intermediation based on heterogeneity in the information investors possess about the

trading motives of their counterparties and their willingness to pay. Superior information allows

investors to avoid distortive mechanisms and, as a result, the investors who are the most central

in trade must be endowed with superior information.

The theory suggests that heterogeneity in screening expertise has important implications for

trade outcomes and market structure, an implication that we explore empirically. Regarding

trade outcomes, we show empirical evidence in line with the central prediction of our theory by

examining the effect of filing a 13-F form to the SEC, which makes the institution’s holdings of

SEC regulated securities public information, on the probability of trade in the CDS index market.

We show that a 13-F filing increases the probability of trade with periphery institutions to a

greater extent than with core institutions, and in several specifications we find no effect of a 13-F

filing on trade with core institutions. Regarding market structure, we provide empirical evidence

using the CDS data that the extent of middleman activity and trade network depth of investors

are consistent with the predictions of our model. While the trade outcome and market structure

predictions follow from our theory, they do not follow from other theories of financial market

intermediation based on complete information, private information about common values, or

contact rate heterogeneity.

There are several important questions we leave for future research. For instance, a more ex-

tensive quantitative exploration of the extent of private and heterogeneous information in decen-

tralized markets and its welfare implications. We believe that our paper provides an abundance

of statistics that can be used for this. Another direction is to explore non-stationary equilibria or

the response of the model to aggregate shocks, such as the 2008 financial crisis or the 2020 Covid-

19 pandemic. Not only is intermediation in OTC markets important during normal times, but

especially so after aggregate shocks. For example, the COVID-19 pandemic triggered investors

demand to trade in the US treasury and corporate bond markets, overwhelming dealers capacity

to intermediate the market and causing yields to rise sharply until the Federal Reserve stepped
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in.25 Our model provides a natural mechanism through which aggregate shocks that impact the

distribution of valuations alters the gains from expertise, the incentive to intermediate assets, and

asset misallocation.
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A Appendix: Proofs

A.1 Price distortions

In this subsection we provide the proofs for the results in sub-section 3.1. Specifically, we provide

the proofs of Lemma 1 and Corollary 1, which show how trade is distorted under private infor-

mation when the owner makes the take-it-or-leave-it offer. The proofs of Lemma 2 and Corollary

2 are analogous and we omit them here.

Proof of Lemma 1. Note that objo(ask; αn) is smaller or equal to zero for any ask smaller or

equal to ∆o. Since Mn(·; αn) is a cumulative distribution, and therefore right continuous, and

Mn(∆o; αn) < 1, there exists ˆask > ∆o such that Mn( ˆask; αn) < 1. As a result, we have that

objo(asko; αn) ≥ objo( ˆask; αn) = [ ˆask− ∆o][1−Mn( ˆask; αn)] > 0 =⇒ asko � ∆o.
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Proof of Corollary 1. Because 1− Mn(∆o; αn) ≥ Mn(∆o + ε̄/2; αn) − Mn(∆o; αn) > 0, Lemma

1 implies that asko − ∆o > 0. Let ε = asko − ∆o − min{asko − ∆o, ε̄}/2 ∈ (0, ε̄). Then have that

Mn(asko − ε; αn)−Mn(∆o; αn) = Mn(∆o + min{asko − ∆o, ε̄}/2)−Mn(∆o; αn) > 0.

A.2 Optimal Mechanisms

In this subsection we characterize the optimal selling/buying mechanism, which is going to be

used in our equilibrium existence proof. It is optimal for the owner/non-owner to use an ask/bid

price to sell/buy the asset when the investor does not observe the type of the counterpart in a

meeting. We use this characterization when proving existence of an equilibrium. It is worth

mentioning that many variations of the techniques and results we discuss in this section are

standard in the mechanism design literature, and can be found in, for example, textbooks such

as Mas-Colell, Whinston, Green, et al. (1995). They are included in this section for completeness

of the manuscript.

A.2.1 The optimal selling mechanism as an ask price

Assume that the distribution of reservation values of non-owners, Mn(·; αn), has non-empty

support [
¯
∆, ∆̄] and density mn(·; αn) that is bounded above and away from zero. We omit the

argument αn from Mn(·; αn) and mn(·; αn) to keep the notation short.

We apply the revelation principle and focus on direct mechanisms. For an owner with reser-

vation value ∆o, a direct mechanism is a pair (p, x) : [
¯
∆, ∆̄] → [0, 1] × R, where p(∆n) is the

probability of transferring the asset from the owner to a non-owner with reservation value ∆n,

and x(∆n) is the transfer from the non-owner to the owner.

The problem of an owner with reservation value ∆o is

max
p,x

∫
[x(∆n)− p(∆n)∆o]mn(∆n)d∆n (20)

subject to

IR : p(∆n)∆n − x(∆n);≥ 0 and (21)

IC : p(∆n)∆n − x(∆n) ≥ p(∆̂n)∆n − x(∆̂n); (22)

for all ∆n and ∆̂n in the support [
¯
∆, ∆̄].

We will show a solution to (20)-(22) is associated with an ask price. To do so, it is helpful to

start with the following lemmas.

Lemma 7. A mechanism (p, x) satisfies (21) and (22) if, and only if, p(∆n) is non-decreasing and

Un(∆n) := p(∆n)∆n − x(∆n) = Un( ¯
∆) +

∫ ∆n

¯
∆ p(∆)d∆ with Un( ¯

∆) ≥ 0.

Proof. Let us start showing the necessity part. By reorganizing the IC constraint (22) we can show

that p(∆n)[∆n − ∆̂n] ≥ U(∆n)−U(∆̂n) ≥ p(∆̂n)[∆n − ∆̂n] for any ∆n > ∆̂n. So we can conclude
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that p is non-decreasing. Now we can also apply the envelope theorem in Milgrom and Segal

(2002) (see sub-section 3.1) to conclude that

U(∆n) = U(
¯
∆) +

∫ ∆n

¯
∆

p(∆)d∆.

Since (p, x) satisfies (21), U(∆n) ≥ 0 for all ∆n and we have that U(
¯
∆) ≥ 0.

For the sufficient part, if U(∆n) = U(
¯
∆) +

∫ ∆n

¯
∆ p(∆)d∆ and U(

¯
∆) ≥ 0, then U(∆n) ≥ 0 for all

∆n since p(∆n) ∈ [0, 1]. Hence, the mechanism satisfies (21). Moreover,

U(∆n)−U(∆̂n) =
∫ ∆n

∆̂n

p(∆)d∆n.

And because p is non-decreasing, we have that U(∆n) ≥ U(∆̂n) + p(∆̂n)[∆n − ∆̂n] =⇒ U(∆n) ≥
p(∆̂n)∆n − x(∆̂n). That is, the IC constraint (22) is satisfied.

Lemma 8. Let the distribution of non-owners, Mn, have a non-empty support [
¯
∆, ∆̄] and a density mn

that is bounded above and away from zero. A direct mechanism (p∗, x∗) solves problem (20) if, and only

if, it solves problem

max
p,x

∫
p(∆n)

[
∆n −

1−Mn(∆n)

mn(∆n)
− ∆o

]
mn(∆n)d∆n (23)

subject to p(∆n) being increasing and x satisfying U(∆n) := p(∆n)∆n − x(∆n) =
∫ ∆n

¯
∆ p(∆)d∆.

Proof. Using Lemma 7, we can rewrite the objective function given by problem (20) as∫
[x(∆n)− p(∆n)∆o]mn(∆n)d∆n =∫
p(∆n) [∆n − ∆o]mn(∆n)d∆n −

∫ ∫ ∆n

¯
∆

p(∆)d∆mn(∆n)d∆n −U(
¯
∆).

We apply integration by parts to obtain that∫ ∆̄

¯
∆

∫ ∆n

¯
∆

p(∆)d∆mn(∆n)d∆n =
∫

p(∆n)[1−Mn(∆n)]d∆n.

Combining the above equations, we have that the objective function is∫
p(∆n)

[
∆n −

1−Mn(∆n)

mn(∆n)
− ∆o

]
mn(∆n)d∆n −U(

¯
∆).

U(
¯
∆) is set to zero to maximize profits and, by Lemma 9, p(∆n) is non-decreasing.

Now we can characterize the optimal selling mechanism.

Proposition 11. Let the distribution of non-owners, Mn, have a non-empty support [
¯
∆, ∆̄] and a density

mn that is bounded above and away from zero. Define the functions

H̄n(q) = min
ω, r1 , r2

ωr1 + (1−ω)r2 = q

{ωHn(r1) + (1−ω)Hn(r2)} and h̄n(q) =
dH̄n(q)

dq
, (24)
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where hn(q) = M−1
n (q)− 1−q

mn(M−1
n (q))

and Hn(q) =
∫ q

0 hn(r)dr; and

cn(∆) = h̄n (Mn(∆)) and c−1
n (∆) = inf{∆n ∈ [

¯
∆, ∆̄]; cn(∆n) ≥ ∆}.

The direct mechanism

(
p(∆n), x(∆n)

)
=


(
1, c−1

n (∆o)
)

if cn(∆n) ≥ ∆o

(0, 0) otherwise

achieves the maximum in problem (20). Moreover, a take-it-or-leave-it offer with bidding price of ask =

c−1
n (∆o) decentralizes the above mechanism.

Proof. We can write the objective function as∫
p(∆n)

[
∆n −

1−Mn(∆n)

mn(∆n)
− ∆o

]
dMn =

∫
p(∆n) [hn(Mn(∆n))− ∆o] dMn

=
∫

p(∆n) [cn(∆n)− ∆o] dMn +
∫

p(∆n)
[
hn(Mn(∆n))− h̄n(Mn(∆n))

]
dMn.

Let us consider the last term of the above equation.∫
p(∆n)

[
hn(Mn(∆n))− h̄n(Mn(∆n))

]
dMn

= p(∆n) [Hn(Mn(∆n))− H̄n(Mn(∆n))]
∆̄

¯
∆ −

∫
[Hn(Mn(∆n))− H̄n(Mn(∆n))] dp(∆n).

Since H̄n is the convex-hull of Hn, they coincide at the boundary points
¯
∆ and ∆̄, and we conclude

that the first term of the final expression is equal to 0. The objective function equals∫
p(∆n) [cn(∆n)− ∆o] dMn −

∫
[Hn(Mn(∆n))− H̄n(Mn(∆n))] dp(∆n).

It is easy to see that our proposed mechanism maximizes the first term since, by construction,

p(∆n) = 1 whenever cn(∆n) ≥ ∆o. Also, the proposed mechanism maximizes the second term.

To see this, note that the second term is nonpositive for any weakly increasing p(∆n). In our

proposed mechanism, this term is exactly zero because whenever Hn(Mn(∆n))− H̄n(Mn(∆n)) >

0 the derivative g(q) = H̄nG(q)
dq is constant due the convex hull and, as a result, dp(∆n) is zero.

Thus, the proposed mechanism achieves the maximum in problem (23) and, therefore, in problem

(20).

For the owner, asking the price c−1
n (∆o) and selling the asset whenever the non-owner has a

reservation value higher than the ask price is an optimal mechanism. Therefore, it coincides with

the optimal ask price analyzed in Section 3.

A.2.2 The optimal buying mechanism as a bid price

The problem of a non-owner is analogous to the problem of an owner presented in subsection

A.2.1, and, to keep the presentation short, here we will only formulate the problem and present

the main result.

48



We assume that the distribution of reservation values of owners, Mo(·; αo), has a non-empty

support [
¯
∆, ∆̄] and a density mo(·; αo) which is bounded above and away from zero, and omit the

argument αo from Mo(·; αo) and mo(·; αo) to keep the notation short. The problem of a non-owner

with reservation value ∆n is given by

max
p,x

∫
[p(∆o)∆n − x(∆o)]mo(∆o)d∆o (25)

subject to

IR : x(∆o)− p(∆o)∆o ≥ 0 and (26)

IC : x(∆o)− p(∆o)∆o ≥ x(∆̂o)− p(∆̂o)∆o; (27)

for all ∆o and ∆̂o in the support [
¯
∆, ∆̄]. We now characterize mechanism that are IC and individ-

ually rational, that is, satisfy equations (26) and (27).

Lemma 9. A mechanism (p, x) satisfies (26) and (27) if, and only if, p(∆o) is non-increasing and

Uo(∆o) := x(∆o)− p(∆o)∆o = Uo(∆̄) +
∫ ∆̄

∆o
p(∆)d∆ with Uo( ¯

∆) ≥ 0.

We are now ready to state our characterization of the optimal buying mechanism.

Proposition 12. Let the distribution of owners, Mo, have a non-empty support [
¯
∆, ∆̄] and a density mo

that is essentially bounded above and away from zero. Define the functions

H̄o(q) = min
ω, r1 , r2

ωr1 + (1−ω)r2 = q

{ωHo(r1) + (1−ω)Ho(r2)} , h̄o(q) =
dH̄o(q)

dq
(28)

where ho(q) = M−1
o (q) + q

mo(M−1
o (q))

and Ho(q) =
∫ q

0 ho(r)dr, and

co(∆) = h̄o (Mo(∆)) and c−1
o (∆) = sup{∆o ∈ [

¯
∆, ∆̄]; co(∆o) ≤ ∆}.

The direct mechanism

(
p(∆o), x(∆o)

)
=


(
1, c−1

o (∆n)
)

if co(∆o) ≤ ∆n

(0, 0) otherwise

achieves the maximum in problem (25). Moreover, a take-it-or-leave-it offer with bidding price of bid =

c−1
o (∆n) decentralizes the above mechanism.

For the non-owner, biding the price c−1
o (∆n) and buying the asset whenever the owner has a

reservation value lower than the bid price is an optimal mechanism. Therefore, it coincides with

the optimal bid price analyzed in Section 3.

A.3 Equilibrium

There exists a symmetric steady-state equilibrium, with bid and ask prices associated with opti-

mal buying and selling mechanisms. The strategy for our proof is the following. We define an
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operator T mapping the reservation value and distribution of types across owners, ∆ and Φ, into

a new reservation value and distribution, ∆̂ and Φ̂, using the equilibrium conditions. Such pro-

cedure may lead to functions that are not differentiable. This can be a problem because bounded

and closed subsets of the space of continuous functions is not compact. To account for that, we

show that the operator maps Lipschitz continuous functions in Lipschitz continuous functions

with the same constant. Since bounded and closed subsets of the space of Lipschitz continuous

functions with the same constant is compact, we can apply Schauder fixed point theorem. We

then build the other equilibrium objects from the fixed point we established existence.

Proof of Proposition 1. We first show existence in a truncated economy and later take the limit

so it converges to our original economy. Consider a truncation of our economy with preference

types ν ∈ [
¯
ν, ν̄], where ν̄ > 0 is some large constant and

¯
ν < −λν̄. With slight abuse of notation,

we use F and f below to denote the cumulative distribution and density of θ = (α, ν) truncated

in the set ΘM = Θ ∩ [0, 1]× [
¯
ν, ν̄]. We first show that an equilibrium for this truncated economy

exists. Then we take the limit when
¯
ν and ν̄ go to infinity and argue for the convergence to an

equilibrium of the original economy.

Defining the compact set E : We start defining the space of functions in which we will apply

our fixed point theorem. Define first the objects a = λ
λ+µ+η+r , b = 1

λ+µ+η+r , κ = 1
1−a ,

¯
κ = η

λ+µ+η ,

κ̄ = λ+η
λ+µ+η ,

¯
∆ = ¯

ν
r , ∆̄ = ν̄

r , φ(θ) = ∂Φ/∂ν, and ∆ν = ∂∆/∂ν. Let E be the set of (∆, Φ) ∈
C0(ΘM)× C0(ΘM) satisfying the following conditions:

∆(α, 0) ≥ 0; (29)

¯
∆ ≤ ∆(α, ν) ≤ ∆̄; (30)

b ≤ ∆(α, ν̂)− ∆(α, ν)

ν̂− ν
≤ (1 + κ)b; (31)

0 ≤ Φ(α, ν) ≤ κ̄F(α, ν); and (32)

¯
κ

F(α, ν̂)− F(α, ν)

ν̂− ν
≤ Φ(α, ν̂)−Φ(α, ν)

ν̂− ν
≤ κ̄

F(α, ν̂)− F(α, ν)

ν̂− ν
. (33)

Equations (29)–(33) imply that E is a compact and convex subspace of C0(ΘM) × C0(ΘM).

To see this result, note that E is uniformly bounded, and Lipschitz continuous with the same

constant. Since all inequalities in equations (29)-(33) are weak inequalities, E is also closed.

Lipschitz continuity implies uniform continuity and guarantees that the Arzelà-Ascoli theorem

can be applied. Then, any sequence in E has a converging sub-sequence and we conclude that E
is compact. The convexity of E comes from the linearity of inequalities (29)–(33).
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Defining the operator T : E → E

We define T in two steps. First, given (∆, Φ) ∈ E , we solve the optimal buy/sell mechanisms.

Then, we use these mechanisms and the equilibrium equations to determine the new reservation

value and distributions (∆̂, Φ̂) ∈ E .

Solving for the optimal bid and ask functions: Consider the pair (∆, Φ) ∈ E . We want to

apply Propositions 11 and 12 to solve for the optimal buying and selling mechanisms under

private information.

It is convenient to assume that Φ satisfies equation (33) so it is Lipschitz continuous; however,

we know that Φ(θ) must be zero in equilibrium if ∆(θ) < 0. Due to this reason, we work with

an adjusted version of Φ when deriving the optimal buying and selling. For each α, define

∆−1(α, x) =

 inf{ν; ∆(α, ν) ≥ x} if ∆(α, ν̄) ≥ x

ν̄ if ∆(α, ν̄) < x
, and (34)

Φ̃(α, ν) =

 Φ(α, ν)−Φ(α, ∆−1(α, 0)) if ∆(α, ν) ≥ 0

0 if ∆(α, ν) < 0
(35)

where x ∈ [
¯
∆, ∆̄]. Equation (31) implies that ∆ is strictly increasing in ν given α for all x ∈

[∆(α,
¯
ν), ∆(α, ν̄)], so its inverse is a bijection in this set. Also, because ∆(α, ν̄) > ∆(α, 0) ≥ 0 by

equation (29), Φ̃(α, ·) has a non-degenerated support [∆−1(α, 0), ν̄].

Let Mo and Mn be given by

Mo(x; α) =
Φ̃(α, ∆−1(α, x))

Φ̃(α, ν̄)
and Mn(x; α) =

F(α, ∆−1(α, x))− Φ̃(α, ∆−1(α, x))
F(α, ν̄)− Φ̃(α, ν̄)

(36)

for x ∈ [∆(α,
¯
ν), ∆(α, ν̄)] and given α. The following lemma shows that Mo and Mn as defined

above are continuous on (∆, Φ) ∈ E .

Lemma 10. Consider any sequence {∆l , Φl}l ⊂ E converging to a point (∆∗, Φ∗) ∈ E in the sup norm.

Then, {Mlo, Mln}l also converge to (M∗o , M∗n) in the sup norm.

Proof. Consider any sequence {∆l , Φl}l ⊂ E converging to (∆∗, Φ∗) ∈ E .
Let us first show that ∆−1

l (α, x) converges to ∆∗−1(α, x), as defined in equation (34). First note
that equation (34) implies that {∆−1

l (α, x)}l is Lipshitz continuous with constant 1/b, so it has
at least one convergent sub-sequence. Moreover, any convergent sub-sequence has to converge
to ∆∗−1(α, x). Note that a sequence converge if, and only if, it has at least one converging
sub-sequence and all converging sub-sequences converge to the same point. To see that any
convergent sub-sequence has to converge to ∆∗−1(α, x), consider a converging sub-sequence and
pick first x ∈

(
∆∗(α,

¯
ν), ∆∗(α, ν̄)

)
. Note that for l large enough we must also have that x ∈(

∆l(α,
¯
ν), ∆l(α, ν̄)

)
. Then, from equation (31), we have that∣∣∣∆∗(∆∗−1(α, x)
)
− ∆l

(
∆∗−1(α, x)

)∣∣∣ = ∣∣∣∆l
(
∆−1

l (α, x)
)
− ∆l

(
∆∗−1(α, x)

)∣∣∣ ≥ b
∣∣∣∆−1

l (α, x)− ∆∗−1(α, x)
∣∣∣

51



=⇒
∣∣∣∆−1

l (α, x)− ∆∗−1(α, x)
∣∣∣ ≤ 1

b

∣∣∣∆∗(∆∗−1(α, x)
)
− ∆l

(
∆∗−1(α, x)

)∣∣∣ .

Note that
∣∣∆∗(∆∗−1(α, x)

)
− ∆l

(
∆∗−1(α, x)

)∣∣ goes to zero since ∆l converges to ∆∗ in the sup

norm. Therefore, ∆−1
l (α, x) converge to ∆∗−1(α, x) for x ∈

(
∆∗(α,

¯
ν), ∆∗(α, ν̄)

)
.

Now for x < ∆∗(α,
¯
ν), note that for l large enough we must also have that x < ∆(α,

¯
ν) so

∆−1
l (α, x) = ∆∗−1(α, x) =

¯
ν. If x > ∆∗(α, ν̄), then for l large enough we must also have that

x > ∆l(α, ν̄) so ∆−1
l (α, x) = ∆∗−1(α, x) = ν̄. From the above arguments we can conclude that the

convergence occurs everywhere but at the points x = ∆∗(α,
¯
ν) and x = ∆∗(α, ν̄). But since the

function is Lipshitz continuous, it must also converge at these points at the same rate.

Now let us show that Φ̃l , defined by (35), converges to Φ̃∗ defined by (35). For each α, we

have that

Φ̃l(α, ν) =

 Φl(α, ν)−Φl(α, ∆−1
l (α, 0)) if ∆l(α, ν) ≥ 0

0 if ∆l(α, ν) < 0
.

We already showed that ∆−1
l converges in the sup norm. The proof that Φ̃l converges to Φ̃∗

follows similar steps. {Φ̃l(α, ν)}l is Lipshitz continuous with constant κ̄ν{ f (α, ν)}, so it has at

least one convergent sub-sequence. For (α, ν) such that ∆∗(α, ν) > 0,

|Φ̃l(α, ν)− Φ̃∗(α, ν)| ≤ 2 sup
θ

|Φl(θ)−Φ∗(θ)|+ κ̄ν{ f (α, ν)} sup
θ

|∆−1
l (θ)− ∆−1∗(θ)|.

The above converges because Φ̃l → Φ∗ and ∆−1
l → ∆∗−1. For (α, ν) such that ∆∗(α, ν) < 0, we

have that Φ̃l(α, ν) = Φ̃∗(α, ν) = 0 for l large enough. And the convergence for (α, ν) such that

∆∗(α, ν) = 0 can be concluded from the continuity of Φ̃∗(α, ν).

Finally, let us show that {Mlo, Mln} converge to (M∗o , M∗n). Note that

|Mlo(x; α)−M∗o (x; α)| =
∣∣∣∣∣ Φ̃l(α, ∆−1

l (α, x))
Φ̃l(α, ν̄)

− Φ̃∗(α, ∆∗−1(α, x))
Φ̃∗(α, ν̄)

∣∣∣∣∣
=

∣∣∣∣∣ Φ̃∗(α, ν̄)Φ̃l(α, ∆−1
l (α, x))− Φ̃l(α, ν̄)Φ̃∗(α, ∆∗−1(α, x))

Φ̃l(α, ν̄)Φ̃∗(α, ν̄)

∣∣∣∣∣
≤
∣∣∣∣∣ Φ̃∗(α, ν̄)Φ̃l(α, ∆−1

l (α, x))− Φ̃∗(α, ν̄)Φ̃l(α, ∆∗−1(α, x))
Φ̃l(α, ν̄)Φ̃∗(α, ν̄)

∣∣∣∣∣+∣∣∣∣ Φ̃∗(α, ν̄)Φ̃l(α, ∆∗−1(α, x))− Φ̃l(α, ν̄)Φ̃∗(α, ∆∗−1(α, x))
Φ̃l(α, ν̄)Φ̃∗(α, ν̄)

∣∣∣∣
≤
∣∣∣∣∣ Φ̃l(α, ∆−1

l (α, x))− Φ̃l(α, ∆∗−1(α, x))
Φ̃l(α, ν̄)

∣∣∣∣∣+∣∣∣∣ Φ̃∗(α, ν̄)Φ̃l(α, ∆∗−1(α, x))− Φ̃∗(α, ν̄)Φ̃∗(α, ∆∗−1(α, x))
Φ̃l(α, ν̄)Φ̃∗(α, ν̄)

∣∣∣∣+∣∣∣∣ Φ̃∗(α, ν̄)Φ̃∗(α, ∆∗−1(α, x))− Φ̃l(α, ν̄)Φ̃∗(α, ∆∗−1(α, x))
Φ̃l(α, ν̄)Φ̃∗(α, ν̄)

∣∣∣∣
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≤
κ̄ supθ{ f (θ)}

Φ̃l(α, ν̄)
×
∣∣∣∆−1

l (α, x)− ∆∗−1(α, x)
∣∣∣+

1
Φ̃l(α, ν̄)

×
∣∣∣Φ̃l(α, ∆∗−1(α, x))− Φ̃∗(α, ∆∗−1(α, x))

∣∣∣+
Φ̃∗(α, ∆∗−1(α, x))
Φ̃l(α, ν̄)Φ̃∗(α, ν̄)

×
∣∣Φ̃∗(α, ν̄)− Φ̃l(α, ν̄)

∣∣ .

In the last equation, since ∆−1
l converges uniformly to ∆∗−1 and Φ̃l converges uniformly to Φ̃∗,

all the terms multiplying outside the norms converge uniformly to strictly positive numbers

evaluated at Φ̃∗ and the terms inside the norms converge uniformly to zero. Therefore, Mlo

converges uniformly to M∗o . The proof that Mln converges uniformly to M∗l follows the same

steps and we ommit them here.

For each expertise α, Mo(·; α) and Mn(·; α) are probability distributions and satisfy all the

properties needed to apply Propositions 11 and 12. That is, they have a non-empty support in

an interval and a density that is essentially bounded above and away from zero. We show this

below.

Lemma 11. Consider (∆, Φ) ∈ E . Then, for each α, Mo(x; α) and Mn(x; α) defined by equation (36)

have support [max{∆(α,
¯
ν), 0}, ∆(α, ν̄)] and [∆(α,

¯
ν), ∆(α, ν̄)], and densities mo(x; α) and mn(x; α) that

are essentially bounded above and away from zero.

Proof. We will show the results for Mo(·; α). We can use similar arguments to show the results

for Mn(·; α), but we omit them here to keep the proof short.

The support of Mo(·; α), given α, is [max{∆(α,
¯
ν), 0}, ∆(α, ν̄)] because for x > ∆(α,

¯
ν) the

inverse ∆−1(α, x) = ν̄ so Mo(·; α) is constant; and for x < max{∆(α,
¯
ν), 0} either the inverse

∆−1(α, x) =
¯
ν is constant, or Φ̃(α, ∆−1(α, x)) = 0 and is also constant. Similarly, the support of

Mn(·; α), given α, is [∆(α,
¯
ν), ∆(α, ν̄)].

Equation (29) and (31) imply that ∆(α, ν̄) > 0 so Mo(·; α) has non-degenerated support. From

equation (31), for each α, we know that ∆−1 is Lipschitz continuous with constant 1
b , so it has

a derivative almost everywhere which we denote by d∆−1(α, ·). Again, using equation (31),

d∆−1 is bounded below by 1
(1+κ)b almost everywhere. So Mo(x; α) =

∫ x
max{∆(α,

¯
ν),0} mo(u; α)du

where mo(u; α) = φ̃(∆−1(α, u))d∆−1(u) for u ∈ [max{∆(α,
¯
ν), 0}, ∆(α,

¯
ν)]. For given α, φ̃(α, ·)

is bounded below by
¯
κ infν{ f (α, ν)} in its support, and d∆−1 is essentially bounded below by

1
(1+κ)b almost everywhere. Then, we can conclude that mo is essentially bounded below by

¯
κ infν{ f (α, ν)} 1

(1+κ)b > 0.

Now we apply Propositions 11 and 12 to define the bid and ask prices. The ask price of

an owner with reservation value ∆o = ∆(θo) in meeting a non-owner with expertise αn under

private information is

asko(∆o; αn) = c−1
n (∆o; αn), (37)
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where c−1
n is given in Proposition 11 for given Mn(·; αn). The bid price of a non-owner with

reservation value ∆n = ∆(θn) in meeting an owner with expertise αo under private information

is

bidn(∆n; αo) = c−1
o (∆n; αo) (38)

where c−1
o is given in Proposition 12 for given Mn(·; αn).

Lemma 12. Consider a sequence {∆l , Φl}l ⊂ E converging to (∆∗, Φ∗) ∈ E in the sup norm. Then,

{asklo, bidln}l converge to (ask∗o , bid∗n) in the L1 norm. That is, for all α

lim
l

∫ ∆̄

¯
∆
|asklo(x; α)− ask∗o(x; α)|dx = lim

l

∫ ∆̄

¯
∆
|bidlo(x; α)− bid∗o (x; α)|dx = 0. (39)

Proof. We prove the result for asko and omit it for bidn since it is analogous. Let us start fixing an

expertise level α.

The ask function ask∗o(·; α) the unique maximizer of profits almost everywhere (that is, except

in a set of measure zero). To see this note that, from the proof of proposition 11, for a given x the

profit of the seller is given by∫
p(∆n) [cn(∆n; α)− x] dMn(·; α)−

∫
[Hn(Mn(∆n); α)− H̄n(Mn(∆n); α)] dp(∆n).

Then, if there is another ask 6= ask∗o(x; α) that also maximizes profit we must have that∫ ∆̄

ask∗o (x;α)
[cn(∆n; α)− x] dMn(·; α) =

∫ ∆̄

ask
[cn(∆n; α)− x] dMn(·; α).

Since ask∗o(x; α) is the infimum value such that cn(∆n) ≥ x, we must have that ask > ask∗o(x; α);

otherwise, the right-hand side of the above equation would have to be smaller than the left-hand

side. But then, ∫ ask

ask∗o (x;α)
[cn(∆n; α)− x] dMn(·; α) = 0.

But Mn(·; α) has a density bounded away from zero and, by definition, cn(∆n; α) ≥ x for all

∆n ≥ ask∗o(x; α). So the above equation implies that cn(∆n; α) = x for all ∆n ∈ [ask∗o(x; α), ask].

Since cn(·; α) is weakly increasing and has bounded support, it can have at most countable flat

regions. As a result, there are at most countable many points x ∈ [
¯
∆, ∆̄] such that ask∗o(x; α) is

not the unique maximizer of profits.

Now let us show that {asklo(x; α)}l converges to ask∗o(x; α) for almost every x. Suppose that

was not the case for some α and x, such that ask∗o(·; α) is the unique maximizer of profits. Then,

passing to a sub-sequence if necessary, {asklo(x; α)}l would converge to some ask 6= ask∗o(x; α).

Because ask∗o(·; α) is the unique maximizer of profits,

[1−M∗o (ask∗o(x; α); α)][ask∗o(·; α)− x] > [1−M∗o (ask; α)][ask− x].

But since {asklo(x; α)}l converges to ask, {Mlo}l converges to M∗o in the sup norm, M∗o and is of
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bounded variation, the above equation implies that

[1−Mlo(ask∗o(x; α); α)][ask∗o(·; α)− x] > [1−Mol(asklo(x; α); α)][asklo(x; α)− x].

Which is a contradiction since the ask price asklo(x; α) maximizes profits given the distribution

−Mol . Therefore, {asklo(x; α)}l converges to ask∗o(x; α) for all x such that ask∗o(·; α) is the unique

maximizer of profits. Since ask∗o(·; α) the unique maximizer for all but countable many points,

{asklo(x; α)}l converges to ask∗o(x; α) for all but countable many points. That is, almost every-

where.

Let A ⊂ [
¯
∆, ∆̄] be the set of points x such that ask∗o(·; α) is continuous at x and {asklo(x; α)}l

converges to ask∗o(x; α). Because cn(·; α) is weakly increasing, ask∗o(·; α) is also weakly increas-

ing and, therefore, discontinuous at most countable many points. Since we already showed

that {asklo(x; α)}l converges to ask∗o(x; α) for all but countable many points, we know that the

complement of A, defined AC, has at most countable many points and therefore, has measure

zero.

Now let us show that for all α

lim
l

∫ ∆̄

¯
∆
|asklo(x; α)− ask∗o(x; α)|dx = 0.

Pick ε > 0 and lets us show we can choose lε such that
∫ ∆̄

¯
∆ |asklo(x; α)− ask∗o(x; α)|dx < ε for all

l ≥ lε. Define ε̄ = ε
∆̄−

¯
∆ .

Since the interval [
¯
∆, ∆̄] is separable, so it is the set A ⊂ [

¯
∆, ∆̄]. Then we can pick a countable

set E ⊂ A which is dense in A. By continuity of ask∗o(·; α) in A, for each point x ∈ E ⊂ A we can

find ax, bx ∈ A, with ax < bx, such that |ask∗o(x1; α)− ask∗o(x2; α)| < ε̄/5 for all x1, x2 ∈ [ax, bx] ∩ A.

Define Bx = [ax, bx] ∩ A.

Now, since A = ∪x∈EBx and the complement of A, AC, has measure zero, we can pick a finite

subset E′ ⊂ E such that ∫
A

dx−
∫
∪x∈E′Bx

dx =
∫
∩x∈E′B

C
x

dx ≤ ε̄

5
,

where BC
x is the coplement of Bx relative to [

¯
∆, ∆̄]. Then we have that∫ ∆̄

¯
∆
|asklo(x; α)− ask∗o(x; α)|dx =

∫
A
|asklo(x; α)− ask∗o(x; α)|dx

=
∫
∪x∈E′Bx

|asklo(x; α)− ask∗o(x; α)|dx +
∫
∩x∈E′B

C
x

|asklo(x; α)− ask∗o(x; α)|dx

≤
∫
∪x∈E′Bx

|asklo(x; α)− ask∗o(x; α)|dx +
∫
∩x∈E′B

C
x

[∆̄−
¯
∆]dx

=
∫
∪x∈E′Bx

|asklo(x; α)− ask∗o(x; α)|dx +
ε̄[∆̄−

¯
∆]

5
,

where the inequalities come from asklo(·; α) and ask∗o(·; α) being weakly increasing and satisfying

ax ≤ x̃ ≤ bx.
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Since E′ is a finite set, and {asklo(ax; α)}l converges to ask∗o(ax; α) and {asklo(bx; α)}l converges

to ask∗o(bx; α) for all ax, bx associated with x ∈ E′, we can get an lε large enough such that

|asklo(ax; α) − ask∗o(ax; α)| < ε̄/5 and |asklo(bx; α) − ask∗o(bx; α)| < ε̄/5 for all ax, bx associated

with x ∈ E′. The key for this is that E′ is finite, so the lε does not depend on the particular x, ax

or bx.

Consider now x̃ ∈ Bx for x ∈ E′ and l ≥ lε. Note that

|asklo(x̃; α)− ask∗o(x̃; α)| ≤ |asklo(bx; α)− ask∗o(ax; α)|+ |ask∗o(bx; α)− asklo(ax; α)|

≤ |asklo(bx; α)− ask∗o(bx; α)|+ |ask∗o(bx; α)− ask∗o(ax; α)|

+ |ask∗o(bx; α)− ask∗l (ax; α)|+ |ask∗l (ax; α)− asklo(ax; α)|

=
ε̄

5
+

ε̄

5
+

ε̄

5
+

ε̄

5
=

4ε̄

5
.

Therefore,∫ ∆̄

¯
∆
|asklo(x; α)− ask∗o(x; α)|dx ≤

∫
∪x∈E′Bx

|asklo(x; α)− ask∗o(x; α)|dx +
ε̄[∆̄−

¯
∆]

5

≤
∫ ∆̄

¯
∆
|asklo(x; α)− ask∗o(x; α)|dx +

ε̄[∆̄−
¯
∆]

5

≤
∫ ∆̄

¯
∆

4ε̄

5
dx +

ε̄[∆̄−
¯
∆]

5
= ε̄[∆̄−

¯
∆] = ε

for all l ≥ lε. Which concludes the proof.

Reservation value: Now that we have the bid and ask prices for the meetings under private

information, we are in position to define the map of reservation values. Given (∆, Φ) ∈ E , define

∆̂ as

∆̂(θ) =
ν + λ[∆(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r
, (40)

where πo and πn are given by (3) and (4) associated with the bid and ask defined above the

distribution Φ̃ as defined in equation (35).

Lemma 13. Consider (∆, Φ) ∈ E , then the function ∆̂(α, ν) defined in equation (40) is continuous in ν

for each α and satisfies equations (29)-(31).

Proof. For the continuity, note that equation (31) implies that ∆ is continuous it suffices to show

that ∆̂ satisfies equations (29)-(31).

Let us start with (29), ∆̂(α, 0) ≥ 0. The profit of an owner in a meeting, πo(θ), is bounded

below by zero—the worse he can do is decline any offer and ask a price that is never accepted.

The profit of a non-owner in a meeting, πn(θ), is bounded above by ∆(θ)− 0 = ∆(θ)—the best

she can do is to buy the asset with probability one at the lowest reservation value in the support
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of owners, which is at least zero by equation (35). Then we have that,

∆̂(α, 0) =
λ[∆(α, 0) + (1− s)πo(α, 0)− sπn(α, 0)]

λ + µ + η + r

≥ λ[∆(α, 0)− s∆(α, 0)]
λ + µ + η + r

=
λ(1− s)∆(α, 0)
λ + µ + η + r

≥ 0,

where the last inequality comes from ∆(α, 0) ≥ 0.

Now let us show the two inequalities in equation (30),
¯
∆ ≤ ∆(α, ν) ≤ ∆̄. Let us start with

∆(α, ν) ≥
¯
∆ := ¯

ν/r. As before, we have that

∆̂(θ) =
ν + λ[∆(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r

≥ ν + λ[∆(θ)− s∆(θ)]
λ + µ + η + r

=
ν + λ(1− s)∆(θ)

λ + µ + η + r
≥ r + λ(1− s)

λ + µ + η + r ¯
∆ ≥

¯
∆,

where the last inequalities come from πo(θ) ≥ 0, πn(θ) ≤ ∆(θ), ν ≥
¯
ν = r

¯
∆, ∆(θ) ≥

¯
∆ and

¯
∆ < 0.

Now let us show the second inequality, that is ∆̂ ≤ ∆̄ := ν̄/r. We have that

∆̂(θ) =
ν + λ[∆(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r
≤ ν + λ[∆(θ) + (1− s)(∆̄− ∆(θ))]

λ + µ + η + r
.

The inequality comes from two reasons. First, the highest profit of an owner is achieved if he

sells the asset to the highest valuation investor with probability one, which implies that πo(θ) ≤
∆̄− ∆(θ). Second, the lowest profit a non-owner can make is zero by declining any offer, which

implies that −πn(θ) ≤ 0. Rearranging the above inequality and using that ν ≤ ν̄ = r∆̄ and

∆(θ) ≤ ∆̄ = ν̄/r, we have that

∆̂(θ) ≤ ν + λ[∆(θ) + (1− s)(∆̄− ∆(θ))]
λ + µ + η + r

≤ r + λ

λ + µ + η + r
∆̄ ≤ ∆̄.

Let us now show that ∆̂(α,ν̂)−∆̂(α,ν)
ν̂−ν ≤ (1 + κ)b. Without loss of generality, assume that ν̂ > ν.

Then, we have that

∆̂(α, ν̂)− ∆̂(α, ν) =
ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r

+ λ
(1− s)[πo(α, ν̂)− πo(α, ν)]− s[πn(α, ν̂)− πn(α, ν)]

λ + µ + η + r
.

Note that the profit an owner makes must be decreasing in his reservation value. That is because

when selling the asset, the owner gives up his reservation value. Moreover, equation (31) implies

that ∆̂(α, ν̂) > ∆̂(α, ν) since ∆̂(α, ν̂)− ∆̂(α, ν) ≥ b(ν̂−ν)
2 > 0. As a result, we have that πo(α, ν̂)−

πo(α, ν) ≤ 0. For a similar reason we know that πn(α, ν̂) − πn(α, ν) ≥ 0, which implies that

−[πn(α, ν̂)− πn(α, ν)] ≤ 0. Then we have that

∆̂(α, ν̂)− ∆̂(α, ν) ≤ ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r
.

Note now that (∆, Φ) ∈ E and, therefore, ∆(α,ν̂)−∆(α,ν)
ν̂−ν ≤ (1 + κ)b. As a result, after dividing both
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sides by ν̂− ν, we have that

∆̂(α, ν̂)− ∆̂(α, ν)

ν̂− ν
≤ 1 + λ(1 + κ)b

λ + µ + η + r
=

[
1 + a

(
1 +

1
1− a

)]
b

=
1− a + a(1− a) + a

1− a
b =

(
a +

1
1− a

)
b ≤ (1 + κ) b,

and we conclude that ∆̂(α,ν̂)−∆̂(α,ν)
ν̂−ν ≤ (1 + κ)b.

Now we have to show our last inequality, ∆̂(α,ν̂)−∆̂(α,ν)
ν̂−ν ≥ b

2 . Assume again that ν̂ > ν so

∆(α, ν̂) > ∆(α, ν). Then,

∆̂(α, ν̂)− ∆̂(α, ν) =
ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r

+ λ
(1− s)[πo(α, ν̂)− πo(α, ν)]− s[πn(α, ν̂)− πn(α, ν)]

λ + µ + η + r
.

Let us look at the difference in profits. For πo(α, ν̂)− πo(α, ν) we have that

πo(α, ν̂)− πo(α, ν) = −ξoαo

∫
(∆n − ∆(α, ν)) 1{∆(α,ν̂)>∆n≥∆(α,ν)}d

Φ̃n(θn)

1− s

+ ξo(1− αo)
∫ {

(asko(α, ν̂)− ∆(α, ν̂)) 1{∆n≥asko(α,ν̂)} − (asko(α, ν)− ∆(α, ν)) 1{∆n≥asko(α,ν)}
}

d
Φ̃n(θn)

1− s︸ ︷︷ ︸
difference in gains from trade with owner designing the trade mechanism

+ ξn

∫
(1− αn)

{
(bidn − ∆(α, ν̂)) 1{bidn≥∆(α,ν̂)} − (bidn − ∆(α, ν)) 1{bidn≥∆(α,ν)}

}
d

Φ̃n(θn)

1− s︸ ︷︷ ︸
difference in gains from trade with non-owner designing the trade mechanism

.

Note that whether the owner is designing the trade mechanism, or the non-owner is designing

it, the mechanism is incentive compatible and individually rational for the owner. As a result, it

satisfy the conditions of Lemma 7 and we have that

πo(α, ν̂)− πo(α, ν) =− ξoαo

∫
(∆n − ∆(α, ν)) 1{∆(α,ν̂)>∆n≥∆(α,ν)}d

Φ̃n(θn)

1− s

− ξo(1− αo)
∫ ∆(α,ν̂)

∆(α,ν)

[∫
1{cn(∆n;αn)≥∆̃}d

Φ̃n(θn)

1− s

]
d∆̃

− ξn

∫ ∆(α,ν̂)

∆(α,ν)

[∫
(1− αn)1{∆n≥co(∆̃;α)}d

Φ̃n(θn)

1− s

]
d∆̃.

Now we can easily see that

πo(α, ν̂)− πo(α, ν) ≥ −[ξoαo + ξo(1− αo) + ξn(1− αn)][∆(α, ν̂)− ∆(α, ν)]

= −[∆(α, ν̂)− ∆(α, ν)].

We can use very similar arguments to show that the difference in profits for the non-owners,

πn(α, ν̂)− πn(α, ν), satisfy

πn(α, ν̂)− πn(α, ν) ≤ ∆(α, ν̂)− ∆(α, ν).
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Then we have that

∆̂(α, ν̂)− ∆̂(α, ν) =
ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r
+ λ

(1− s)[πo(α, ν̂)− πo(α, ν)]− s[πn(α, ν̂)− πn(α, ν)]

λ + µ + η + r

≥ ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r
− λ

(1− s)[∆(α, ν̂)− ∆(α, ν)] + s[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r
=

ν̂− ν

λ + µ + η + r
.

Therefore, ∆̂(α,ν̂)−∆̂(α,ν)
ν̂−ν ≥ 1

λ+µ+η+r = b, which concludes the proof.

The previous lemma shows that the map above takes (∆, Φ) ∈ E into ∆̂ satisfying the condi-

tions of the set E . Now we show this map is also continuous in the sup norm.

Lemma 14. Consider any sequence {∆l , Φl}l ⊂ E converging to a point (∆∗, Φ∗) ∈ E in the sup norm.

Then, {∆̂l}l also converge to ∆̂∗ in the sup norm, where {∆̂l}l and ∆̂∗ are defined as in equation (40)

based on {∆l , Φl}l and (∆∗, Φ∗).

Proof. By equation (40) we have that

∆̂l(θ) =
ν + λ∆l(θ)

λ + µ + η + r
+ λ

(1− sl)πlo(θ)− slπln(θ)

λ + µ + η + r
.

The first term in the right-hand side converges in the sup norm because it is just a positive

constant multiplying ∆l , which converges in the sup norm to ∆∗. The second term has a constant,
λ/λ + µ + η + r, multiplying (1− sl)πlo(θ) and slπln(θ). So we just have to show that (1− sl)πlo(θ)

and slπln(θ) converge in the sup norm. We show the result for (1 − sl)πlo(θ), the result for

slπln(θ) is analogous.

We have that

(1− sl)πlo(α, ν) = ξoα
∫

(∆l(θn)− ∆l(α, ν)) 1{∆l(θn)≥∆l(α,ν)}dΦ̃ln(θn)

+ ξo(1− α)
∫

[asklo(∆l(α, ν); αn)− ∆l(α, ν)] 1{∆ln≥asklo(∆l(α,ν);αn)}dΦ̃ln(θn)

+ ξn

∫
(1− αn) [bidln(∆l(θn); α)− ∆l(α, ν)] 1{bidln(∆l(θn);α)≥∆l(α,ν)}dΦ̃ln(θn).

It is easy to see that the first and last term in the right-hand side converge in the sup since ∆l

and Φln converge in the sup norm, and bidln(·; α) converge in L1.

The middle term in the right-hand side is a bit trickier. To see this note that∫
[asklo(∆l(α, ν); αn)− ∆l(α, ν)] 1{∆ln≥asklo(∆l(α,ν);αn)}dΦ̃ln(θn)

= ∑
αn

[asklo(∆l(α, ν); αn)− ∆l(α, ν)]
[
Φ̃ln(αn, ν̄)− Φ̃ln

(
αn, ∆−1

l (αn, asklo(∆l(α, ν); αn))
)]

.

Though asklo(·; αn) converges in the L1 norm, it doesn’t have to converge pointwise. In principle,

this could make the above term diverge in the same points that asklo(·; αn) diverge. The reason

the term above converges is that, for each αn,

[asklo(∆l(α, ν); αn)− ∆l(α, ν)]
[
Φ̃ln(αn, ν̄)− Φ̃ln

(
αn, ∆−1

l (αn, asklo(∆l(α, ν); αn))
)]
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is the expected profit an owner of type (α, ν) obtain in a meeting with a non-owner under private

information. As we argue in the proof of lemma 12, these profits converge in the sup norm. That

is because the points in which asklo(·; αn) could diverge are points in which there are more than

one ask price which maximizes profits and the profits itself converge. As we show in the lemma,

if that was not the case the profits in the limit could be improved by picking an ask price used in

the sequence.

We can now conclude that (1− sl)πlo converges in the sup norm to (1− s∗)π∗o . The proof that

slπln converges in the sup norm to s∗π∗n is analogous and we omit it here. As a result, {∆̂l}l also

converge to ∆̂∗ in the sup norm, which concludes the proof.

Distribution: After defining the map of reservation values, we turn our attention to the distri-

butions. Given (∆, Φ) ∈ E , define the distribution Φ̂ as

Φ̂(θ) =
∫

θ̃≤θ
φ̂(θ̃)dθ̃, (41)

where

φ̂(θ) =


[λq̄n(θ)+η] f (θ)

λ[q̄o(θ)+q̄n(θ)]+µ+η
if ∆(θ) ≥ 0

η f (θ)
λ+µ+η if ∆(θ) < 0

, (42)

and we obtain q̄n(θ) and q̄o(θ) from equations (9)-(11), and the distribution Φ̃ as defined in

equation (35).

Similarly to the result for ∆̂ given in Lemma 13, the construction of Φ̂ implies that the con-

straints we impose in the set E are satisfied.

Lemma 15. Consider (∆, Φ) ∈ E , then the function Φ̂(α, ν) defined in equation (41) is continuous in ν

for each α and satisfies equations (32)-(33).

Proof. First note that Φ̂ ∈ C0(ΘM) since it is the integral of the function φ̂ which is bounded. So

we just need to show that

0 ≤ Φ(α, ν) ≤ κ̄F(α, ν) and
¯
κ

F(α, ν̂)− F(α, ν)

ν̂− ν
≤ Φ̂(α, ν̂)− Φ̂(α, ν)

ν̂− ν
≤ κ̄

F(α, ν̂)− F(α, ν)

ν̂− ν

for all (α, ν), (α, ν̂) ∈ ΘM.

The above inequalities come from the fact that Φ̂ =
∫

φ̂ and by noticing that
¯
κ f ≤ φ̂ ≤ κ̄ f . It

is easy to see how these imply that Φ̂ is non-negative, bounded by κ̄F, and that changes in Φ̂ are

bounded by changes in F. For the last two inequalities, without loss of generality consider ν̂ > ν

and any α. Then,

Φ̂(α, ν̂)− Φ̂(α, ν) =
∫ ν̂

ν
φ̂(α, ν̃)dν̃ ≤

∫ ν̂

ν
κ̄ f (α, ν̃)dν̃ = κ̄[F(α, ν̂)− F(α, ν)],
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which implies that Φ̂(α,ν̂)−Φ̂(α,ν)
ν̂−ν ≤ κ̄ F(α,ν̂)−F(α,ν)

ν̂−ν . In a similar way,

Φ̂(α, ν̂)− Φ̂(α, ν) =
∫ ν̂

ν
φ̂(α, ν̃)dν̃ ≥

∫ ν̂

ν ¯
κ f (α, ν̃)dν̃ =

¯
κ[F(α, ν̂)− F(α, ν)],

which implies that Φ̂(α,ν̂)−Φ̂(α,ν)
ν̂−ν ≥

¯
κ F(α,ν̂)−F(α,ν)

ν̂−ν . Which concludes the proof.

The previous lemma shows that the map above takes (∆, Φ) ∈ E into a Φ̂ satisfying the

conditions of the set E . Now we show this map is also continuous in the sup norm.

Lemma 16. Consider any sequence {∆l , Φl}l ⊂ E converging to a point (∆∗, Φ∗) ∈ E in the sup norm.

Then, {Φ̂l}l also converge to Φ̂∗ in the sup norm, where {Φ̂l}l and Φ̂∗ are defined as in equation (41)

based on {∆l , Φl}l and (∆∗, Φ∗).

Proof. By definition we have that

|Φ̂l(θ)− Φ̂∗(θ)| =
∫

θ̃≤θ
|φ̂l(θ̃)− φ̂∗(θ̃)|dθ̃

≤
∫

θ̃≤θ
[κ̄ −

¯
κ] f (θ̃)1{min{∆l(θ̃),∆∗(θ̃)}<0<max{∆l(θ̃),∆∗(θ̃)}}dθ̃

+
∫

θ̃≤θ

∣∣∣∣ [λq̄ln(θ̃) + η] f (θ̃)
λ[q̄lo(θ̃) + q̄ln(θ̃)] + µ + η

− [λq̄∗n(θ̃) + η] f (θ̃)
λ[q̄o(θ̃) + q̄∗n(θ̃)] + µ + η

∣∣∣∣ 1{min{∆l(θ̃),∆∗(θ̃)}≥0}dθ̃.

To understand this inequality, note that, when ∆l(θ̃) and ∆∗(θ̃) are negative, φ̂l(θ̃) = φ̂∗(θ̃) =

η f (θ)/λ + µ + η; when one of ∆l(θ̃), ∆∗(θ̃) is positive and the other is negative, the difference is

bounded above by [κ̄−
¯
κ] f (θ̃); and when both are positive the difference is |φ̂l(θ)− φ̂∗(θ)|, where

φ̂l(θ) and φ̂∗(θ) are given by the first item in equation (42).

For the first term after the inequality, we have that∫
θ̃≤θ

[κ̄ −
¯
κ] f (θ̃)1{min{∆l(θ̃),∆∗(θ̃)}<0<max{∆l(θ̃),∆∗(θ̃)}}dθ̃

≤ sup
θ̃

{[κ̄ −
¯
κ] f (θ̃)}∑

α

sup
θ̃

{∆−1
l (α, 0)− ∆∗−1(α, 0)}.

As we’ve shown in the proof of Lemma 10, ∆−1
l (α, 0) converges to ∆∗−1(α, 0). Therefore, the

above term converges to zero.

For the last term after the inequality, first note that∫
θ̃≤θ

∣∣∣∣ [λq̄ln(θ̃) + η] f (θ̃)
λ[q̄lo(θ̃) + q̄ln(θ̃)] + µ + η

− [λq̄∗n(θ̃) + η] f (θ̃)
λ[q̄o(θ) + q̄∗n(θ̃)] + µ + η

∣∣∣∣ 1{min{∆l(θ̃),∆∗(θ̃)}≥0}dθ̃

≤
∫

θ̃≤θ

∣∣∣∣ [λq̄ln(θ̃) + η] f (θ̃)
λ[q̄lo(θ̃) + q̄ln(θ̃)] + µ + η

− [λq̄∗n(θ̃) + η] f (θ̃)
λ[q̄o(θ̃) + q̄∗n(θ̃)] + µ + η

∣∣∣∣ dθ̃.

Now, note that∣∣∣∣ d
dqo

(
[λq̄n + η] f (θ̃)

λ[q̄o + q̄n] + µ + η

)∣∣∣∣ = λ[λq̄n + η] f (θ̃)
(λ[q̄o + q̄n] + µ + η)2 ≤

λ(λ + η) supθ̃ f (θ̃)
(µ + η)2 ,
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and ∣∣∣∣ d
dqn

(
[λq̄n + η] f (θ̃)

λ[q̄o + q̄n] + µ + η

)∣∣∣∣ = λ[λ(q̄lo + q̄n) + µ + η]− λ[λq̄n + η]

[λ(q̄lo + q̄n) + µ + η]2
f (θ̃)

=
λ[λq̄lo + µ]

[λ(q̄lo + q̄n) + µ + η]2
f (θ̃) ≤

λ(λ + µ) supθ̃ f (θ̃)
(µ + η)2 .

So we can write that∫
θ̃≤θ

∣∣∣∣ [λq̄ln(θ̃) + η] f (θ̃)
λ[q̄lo(θ̃) + q̄ln(θ̃)] + µ + η

− [λq̄∗n(θ̃) + η] f (θ̃)
λ[q̄o(θ) + q̄∗n(θ̃)] + µ + η

∣∣∣∣ 1{min{∆l(θ̃),∆∗(θ̃)}≥0}dθ̃

≤
λ(λ + µ + η) supθ̃ f (θ̃)

(µ + η)2

∫
θ̃≤θ

∣∣q̄ln(θ̃)− q̄∗n(θ̃)
∣∣+ ∣∣q̄lo(θ̃)− q̄∗o (θ̃)

∣∣ dθ̃

≤
λ(λ + µ + η) supθ̃ f (θ̃)

(µ + η)2

∫
θ̃

∫
θo

∣∣ql(θo, θ̃)− q∗(θo, θ̃)
∣∣+ ∫

θn

∣∣ql(θ̃, θn)− q∗(θ̃, θn)
∣∣ dθ.

It then suffices to show that q̄lo(α, ν) and q̄ln(α, ν) converge in the L1 norm to q̄∗o (α, ν) and q̄∗n(α, ν).

By definition,

q(θo, θn) = 1{∆n≥∆o} − ξo(1− αo)1{asko>∆n≥∆o} − ξn(1− αn)1{∆n≥∆o>bidn}.

But since ∆l converges in the sup norm to ∆∗, and askl and bidl converge in the L1 norm to ask∗

and bid∗, the measure of points (θo, θn) such that either

|1{∆ln≥∆lo} − 1{∆∗n≥∆∗o}| = 1 or |1{asklo>∆ln≥∆lo} − 1{ask∗o>∆∗n≥∆∗o}| = 1

or |1{∆ln≥∆lo>bidln} − 1{∆∗n≥∆∗o>bid∗n}| = 1

must be converging to zero. This convergence is independent of θ so∫
θ̃≤θ

∣∣∣∣ [λq̄ln(θ̃) + η] f (θ̃)
λ[q̄lo(θ̃) + q̄ln(θ̃)] + µ + η

− [λq̄∗n(θ̃) + η] f (θ̃)
λ[q̄o(θ) + q̄∗n(θ̃)] + µ + η

∣∣∣∣ 1{min{∆l(θ̃),∆∗(θ̃)}≥0}dθ̃

goes to zero uniformly and therefore Φ̂l(θ) converges to Φ̂∗(θ) in the sup norm. Which concludes

the proof.

Operator and fixed point: Define the map T : E → E associated with equations (40) and (41).

Lemmas 13 and 15 imply that T(∆, Φ) ∈ E is a well defined map. Moreover, lemmas 16 and 14

imply that T is continuous in the sup norm. Therefore, T has a fixed point.

Lemma 17. The map T defined above has a fixed point. That is, there exists (∆∗, Φ∗) ∈ E such that

T(∆∗, Φ∗) = (∆∗, Φ∗).

Proof. This is a direct application of the Schauder Fixed-Point Theorem. The set E is convex and

compact, and the map T is continuous, so a fixed point exists.

Unbounded fixed point: So far we have being working with a bounded support for ν given by

¯
ν and ν̄. Using these bounds, we showed that we can find a fixed point of (∆∗, Φ∗) ∈ E of the
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operator T. That is, a pair (∆∗, Φ∗) ∈ E satisfying equations (40) and (41). Now we show that we

can get a fixed point associated with equations (40) and (41) when we take the limit with
¯
ν and

ν̄ going to minus and plus infinity.

Before taking the limit with
¯
ν and ν̄ going to minus and plus infinity, we have to show one

result. Let ι = 2
r+µ+η and νH > 0 be such that

∑̃
α

∫ ∞

ν
(ν̃− ν)F(α̃, dν̃) ≤ r + µ + η

2λ
ν (43)

for all ν ≥ νH. Note that
∫

ν2F(α, dν) < ∞ for all α implies that νH above exists.

Lemma 18. Consider a truncation [
¯
ν, ν̄] with

¯
ν ≤ −λν̄ < νH < ν̄, and some (∆, Φ) ∈ E . If ∆(α, ν) > ιν

for some α and ν ≥ νH, then (∆, Φ) ∈ E is not a fixed point of the operator T.

Proof. Let θ = (α, ν) ∈ arg maxα̃, ν̃∈[νH ,ν̄]{∆(α̃, ν̃)− ιν̃} and C = ∆(α, ν)− ιν. Since ∆ is continuous

in ν, the set of α’s is finite, and [νH, ν̄] is compact, the argmax above exists, (α, ν) is well defined.

Moreover, because ∆(α̃, ν̃) > ιν for some α̃ and ν̃ ≥ νH, C > 0.

From equation (40), we have that

∆̂(θ) =
ν + λ[∆(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r
≤ ν + λ[ιν + C + (1− s)πo(θ)]

λ + µ + η + r
.

Now note that

(1− s)πo(θ) ≤ ∑̃
α

∫
ν̃
[∆(α̃, ν̃)− ∆(θ)]1{∆(α̃,ν̃)≥∆(θ)}F(α̃, dν̃).

For ν̃ < ν, we have that ∆(α̃, ν̃) < ∆(α̃, ν) ≤ ∆(α, ν) by the definition of (α, ν). Therefore,

(1− s)πo(θ) ≤ ∑̃
α

∫
ν
|∆(α̃, ν̃)− ∆(θ)|F(α̃, dν̃) ≤ ∑̃

α

∫
ν
[ιν̃ + C− ∆(θ)]F(α̃, dν̃)

= ι ∑̃
α

∫
ν
(ν̃− ν)F(α̃, dν̃) ≤ ι

r + µ + η

2λ
ν.

As a result,

∆̂(θ) ≤ ν + λ[ιν + C + (1− s)πo(θ)]

λ + µ + η + r
≤

ν + λ
[
ιν + C + ι

r+µ+η
2λ ν

]
λ + µ + η + r

≤
2ν + 2λν

r+µ+η

λ + µ + η + r
+

λ

λ + µ + η + r
C =

2ν

r + µ + η
+

λ

λ + µ + η + r
C

=ιν +
λ

λ + µ + η + r
C < ιν + C = ∆(θ).

Since ∆̂(θ) < ∆(θ), we have that T(∆, Φ) 6= (∆, Φ). This concludes the proof.

The idea of our proof is simple: we pick a sequence of supports {[
¯
νN , ν̄N ]}N and fixed point

{(∆N , ΦN)}N associated with each of the supports. Then we argue that this sequence has a

convergent sub-sequence so the limit must satisfy the same fixed point equations. However, this
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argument is not that simple because, with unbounded support, we cannot apply the Arzelà-

Ascoli theorem so the space is not compact. Therefore, a converging sub-sequence may not exit.

A sub-sequence that converges in the sup norm may not exist, but we can still build a sub-

sequence that converges in the compact norm.

Definition 2. A sequence {(∆N , ΦN)}N converges compactly to (∆∗, Φ∗) if it converges in the sup norm

in every compact sub-set of Θ.

Let the set EN be defined as before, by equations (29)-(33), where the bounds in ν’s are

ν ∈ [
¯
νN , ν̄N ] = [−λNν̄, Nν̄] and ν̄ > νH given by equation (43).

Lemma 19. Consider a sequence {(∆N , ΦN)}N of fixed points of TN defined as before on the intervals

{[
¯
νN , ν̄N ]}N . Then, {(∆N , ΦN)}N has a sub-sequence that converges compactly.

Proof. For this proof we use a diagonal argument. For given l ≤ N, let {(∆l
N , Φl

N)}N be the

sequence {(∆N , ΦN)}N≥l but with each (∆N , ΦN) ∈ EN truncated in the set El . That is, ∆l
N(α, ν) =

∆N(α, ν) for all α and ν ∈ [
¯
νl , ν̄l ] ⊂ [

¯
νN , ν̄N ].

We build our sub-sequence by induction. Fix l = 1. Note that the sequence {(∆l
N , Φl

N)}N

satisfy equations (29) and (31)-(33) associated with the bound [
¯
νl , ν̄l ]. From the previous lemma,

we also know ∆l
N(α, ν̃) ≤ ιν̄l , and we can also see that

∆l
N(θ) =

ν + λ[∆l
N(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r

≥ ν + λ[∆l
N(θ)− sπn(θ)]

λ + µ + η + r
≥ ν + λ[∆l

N(θ)− ∆l
N(θ)]

λ + µ + η + r
≥ ¯

νl

λ + µ + η + r
.

As a result, {(∆l
N , Φl

N)}N is a sequence of uniformly bounded, Lipschitz continuous functions

with the same constant. Therefore, it has a convergent sub-sequence.

Now pick l′ = l + 1, and the sub-sequence that {(∆l
N , Φl

N)}N converged. Then we can apply

the same argument to show that {(∆l′
N , Φl′

N)}N has a convergent sub-sequence. Since it is a sub-

sequence of the sub-sequence that converged for l, then it converges in

By following this process, we can construct a sub-sequence of {[
¯
νN , ν̄N ]}N that converges

uniformly in every truncation [
¯
νl , ν̄l ]. Since any compact set A ⊂ R of the real numbers is

bounded, we have that A ⊂ [
¯
νl , ν̄l ] for l large enough. Therefore, {[

¯
νN , ν̄N ]}N converges uniformly

in A. Which concludes the proof.

Constructing the equilibrium: Consider a sequence {(∆N , ΦN)}N of fixed points of TN defined

as before on the intervals {[
¯
νN , ν̄N ]}N , and, passing to a sub-sequence if necessary, let (∆∗, Φ∗)

be its limit.

Let us define {bid∗, ask∗, ∆∗, φ∗o , φ∗n, s∗} in the following way.
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1. Let Φ∗o = Φ̃∗ as defined in equation (35). Since Φ∗o has bounded variation, it has a density.

Then, let φ∗o be it is density.

2. Let Φn = F− Φ̃∗. Again, due to bounded variation, Φn has a density. Let φ∗n be it is density.

3. Let s∗ = limν↗∞ ∑α Φ∗(α, ν).

4. Let bid∗ and ask∗ be optimal bid and ask function given Φ∗o = Φ̃∗ and Φn = F− Φ̃∗.

Verifying the equilibrium conditions: To verify the equilibrium conditions, the only thing we

need to show is that the optimal bid and ask functions in the sequence {(bidN , askN)} associated

with {(∆N , ΦN)}N , converge to the optimal bid and ask functions in the limit bid∗ and ask∗. If

that is true, then trade probabilities converge and we get all the other equilibrium conditions.

To show that the bid and ask functions converge, we can apply Lemma 12 with a modification.

In Lemma 12, the support of ν was compact; now it is not. The reason we can still apply is

twofold. First, the sequence uniformly for each compact subset. Second, because the
∫

ν2dF is

bounded, the tail of the distribution goes to zero sufficiently fast so bid and ask functions in a

compact set must be bounded. That is, pick a compact set of types A ⊂ Θ and consider an owner

deciding on an ask price in a meeting with a non-owner with expertise α. If any of the owners in

the set A asks his reservation value plus one the lowest profit he can make is infθ

∫ ∞
∆(θ) mn(u; α)d.

Since the densities are bounded away from zero, the lowest profit he can make doing this bid

is bounded away from zero. We know that the profit of a particular ask is bounded above by

ask
∫ ∞

ask M∗n(dν; α). Since
∫

ν2dF is bounded, limask↗∞ ask
∫ ∞

ask M∗n(dν; α) = 0. Therefore, there is
¯ask such that infθ

∫ ∞
∆(θ) mn(u; α)d > ask

∫ ∞
ask M∗n(dν; α) for all ask ≥ ¯ask.

The ¯ask creates a bound on the ask price that allows us to apply Lemma 12 on the set A. Then

trade probabilities converge in this set and we get all the other equilibrium conditions for this

set. Since we can do this for any compact set, we get the compact convergence of all equilibrium

object.

The equations that defined the operator T, and therefore ∆∗ and Φ∗, are the same as the

equilibrium equations. Since we argued that the bid and ask functions are indeed optimal, all

the equilibrium equations are satisfied. Which concludes the proof.

A.4 Private Information and Market Structure

In this section we prove Lemmas 3 through 6, Propositions 2 through 9, and an additional useful

result in Lemma 20.
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Proof of Lemma 3. Consider any α and ν1 > ν0. Let us show that ∆(θ1) = ∆(α, ν1) > ∆(α, ν0) =

∆(θ0). Equation (7) implies that

∆(θ1)− ∆(θ0) =
ν1 − ν0 + λ(1− s)[πo(θ1)− πo(θ0)] + λs[πn(θ0)− πn(θ1)]

r + µ + η
.

Suppose by the way of contradiction that ∆(θ1)− ∆(θ0) ≤ 0. Since we know that ν1 − ν0 > 0,

we must then have that either πo(θ1) − πo(θ0) < 0 or πn(θ0) − πn(θ1) < 0. Neither of these

inequalities can happen. An owner of type θ1 can always mimic the ask price of the owner of

type θ0, and accept the same bids (under private information, under complete information profits

are zero for both unless the owner is making the TIOLI offer). By doing so, for any meeting that

the owner of type θ0 sells the asset at price p and makes a profit p− ∆(θ0), the owner of type θ1

makes a profit p− ∆(θ1) ≥ p− ∆(θ0) because ∆(θ1)− ∆(θ0) ≤ 0. Therefore, we must have that

πo(θ1) ≥ πo(θ0).

Similarly, the non-owner of type θ0 can always mimic the bid price of the non-owner of type

θ1, and accept the same offers (again under private information, under complete information

profits are zero for both unless the non-owner is making the TIOLI offer). By doing so, for any

meeting that the non-owner of type θ1 buys the asset at price p and makes a profit ∆(θ1)− p, the

owner of type θ0 makes a profit ∆(θ0)− p ≥ ∆(θ1)− p because ∆(θ1)− ∆(θ0) ≤ 0. Therefore, we

must have that πn(θ0) ≥ πn(θ1).

Now we have a contradiction since ∆(θ1) − ∆(θ0) ≤ 0 implies at the same time that either

πo(θ1)−πo(θ0) < 0 or πn(θ0)−πn(θ1) < 0, and that πo(θ1)−πo(θ0) ≥ 0 or πn(θ0)−πn(θ1) ≥ 0.

So we have that ∆(θ1)− ∆(θ0) > 0.

Similarly, ∆ has to be continuous in ν. As before, equation (7) implies that

∆(θ1)− ∆(θ0) =
ν1 − ν0 + λ(1− s)[πo(θ1)− πo(θ0)] + λs[πn(θ0)− πn(θ1)]

r + µ + η
.

The previous argument, and the conclusion that ∆(θ1) − ∆(θ0) > 0, implies that πo(θ1) −
πo(θ0) ≤ 0 and πn(θ0)− πn(θ1) ≤ 0. But then

0 < ∆(θ1)− ∆(θ0) ≤
ν1 − ν0

r + µ + η
,

and we can conclude that limν0↗ν1 ∆(θ0) = ∆(θ1).

To see that limν↗∞ ∆(α, ν) = ∞ note that, because ∆(α, ν) is monotone ν, the limit exists.

Suppose by the way of contradiction that the limit is not infinity and instead is some real number

D̄. We know that

∆(α, ν) =
ν + λ(1− s)πo(α, ν)− λsπn(α, ν)

r + µ + η
.

The profit function πn(α, ν) is bounded above by ∆̄ − 0—there is no investor with reservation
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value below zero who hold asset in equilibrium for him to buy from. Then we have that

lim
ν↗∞

∆(α, ν) = lim
ν↗∞

ν + λ(1− s)πo(α, ν)− λsπn(α, ν)

r + µ + η
≥

limν↗∞ ν− D̄
r + µ + η

= ∞,

which is a contradiction since we assumed that limν↗∞ ∆(α, ν) = D̄. An analogous argument can

be used to show that limν↘∞ ∆(α, ν) = −∞ so we omit it here.

Lemma 20. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, Φo, Φn, s}, and let types θ =

(α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then the probability of trade of an owner and

non-owner satisfy, (i) q̄o(θ) > q̄o(θ̂), and (ii) q̄n(θ) ≥ q̄n(θ̂) with strict inequality if ∆(θ) = ∆(θ̂) > 0.

Proof. First consider the owner’s probability to sell an asset in a meeting. Since both investors

have the same reservation value, the accept the same bids and ask the same prices when selling

the asset. The only difference is the frequency in which they have information when asking a

price, which is determined by α and α̂ As a result, from equations (9) and (11), we have that

q̄o(θ)− q̄o(θ̂) =
∫
���

��1{∆n≥∆(θ)} −����
�1{∆n≥∆(θ̂)}dΦn(θn)

−
∫

ξo(1− α)1{asko>∆n≥∆(θ)} − ξo(1− α̂)1{ ˆasko>∆n≥∆(θ̂)}dΦn(θn)

−
∫
(((

((((
(((

(((
ξn(1− αn)1{∆n≥∆(θ)>bidn} −(((((

((((
((((

ξn(1− αn)1{∆n≥∆(θ̂)>bidn}dΦn(θn)

= ξo(α− α̂)
∫

1{asko>∆n≥∆(θ)}dΦn(θn).

We know that ξo > 0 and α− α̂ > 0, so we have to show now that
∫

1{asko>∆n≥∆(θ)}dΦn(θn) > 0.

Equation (8) implies that φn(θ̃) is bounded below by µ f (θ̃)
λ+µ+η for all θ̃. Moreover, asko has to be

strictly bigger than ∆(θ). Otherwise, profits would be at most zero. That cannot happen since an

ask of ask = ∆(α, ν + ε) implies a profit of at least

[∆(α, ν + ε)− ∆(θ)]
∫ ∞

ν+ε
φn(α, ν̃)dν̃,

which is strictly positive since, by Lemma 3, ∆ is strictly increasing in ν, and, by equation (8),

φn(α, ν̃) > 0.

So the ask price has to be strictly above ∆(θ). Therefore,
∫

1{asko>∆n≥∆(θ)}dΦn(θn) is strictly

positive and we can conclude that q̄o(θ) > q̄o(θ̂).

The proof for the non-owner’s case follow a similar logic and we omit it here. The only

difference is that, in equilibrium, φo is zero when ∆(θ) < 0. This implies that non-owners with

reservation value below zero all have zero probability to buy an asset. That is why in this case

the strict inequality only holds when ∆(θ) = ∆(θ̂) > 0.

Proof of Lemma 4. If ∆(θ) = ∆(θ) < 0, then in a stationary equilibrium we must have that

φo(θ) = 0 and q̄n(θ) = 0. That is, there is no owner with negative reservation value holding

assets in equilibrium because they would not issue new assets nor buy from investors with non-

67



negative reservation value. So any existing assets would mature and disappear. This implies that

c(θ) = c(θ̂) = 0 when ∆(θ) = ∆(θ̂) < 0.

For ∆(θ) = ∆(θ) ≥ 0 we have the following. Replacing the equilibrium condition of φo and

φn in (15) we obtain

c(θ) =
λ

2Vol
× [η + λq̄n(θ)]q̄o(θ) + [µ + λq̄o(θ)]q̄n(θ)

η + µ + λ[q̄o(θ) + q̄n(θ)]
,

It is easy to verify that [η+λq̄n(θ)]q̄o(θ)+[µ+λq̄o(θ)]q̄n(θ)
η+µ+λ[q̄o(θ)+q̄n(θ)]

is strictly increasing in q̄o(θ) and q̄n(θ), and,

from Proposition 20, we know that q̄o(θ) > q̄o(θ̂) and q̄n(θ) ≥ q̄n(θ̂). Therefore, we conclude that

c(θ) > c(θ̂).

Proof of Proposition 2. It is easy to see that the most central investor cannot satisfy ∆(θ∗) < 0

since that would imply c(θ∗) = 0. Then, we must ∆(θ∗) ≥ 0. Suppose by the way of contradiction

that α∗ does not equal αI , so it is some α∗ < αI . From Lemma 3, we know that limν↘−∞ ∆(αI , ν) =

−∞ and limν↗∞ ∆(αI , ν) = ∞. As a result, we can find νL and νH such that ∆(αI , νL) < ∆(θ∗) <

∆(αI , νL). Since ∆(αI , ν) is continuous ν, then it must exist ν′ such that ∆(αI , ν′) = ∆(θ∗). Then,

by Proposition 4, we would have c(θ′) > c(θ∗) – a contradiction – which concludes the proof.

Proof of Proposition 3. We can consider two cases. If supθ∈Θ{c(θ)} is strictly greater than

supθ∈Θ{c(θ); s.t. α ≤ αI−1}, the results is trivial. For any θ, c(θ) ≥
¯
c implies that c(θ) >

supθ∈Θ{c(θ); s.t. α ≤ αI−1}. Therefore, by the definition of sup, we cannot have α ≤ αI−1. If

supθ∈Θ{c(θ)} = supθ∈Θ{c(θ); s.t. α ≤ αI−1}, then c(θ) ≥
¯
c implies that c(θ) = supθ∈Θ{c(θ); s.t. α ≤

αI−1}. But this is a contradiction since, by Proposition 4, there would exist θ′ such that α′ = 1,

∆(θ′) = ∆(θ) and c(θ′) > c(θ) ≥
¯
c = supθ∈Θ{c(θ)}.

Proof of Propositions 4 and 5. Under complete information, the ex-ante probabilities of buying

and selling are an explicit function of the endogenous distributions Φo and Φn. A non-owner

of type ν buys the asset from all owners with type below ν and an owner with type ν sells the

asset to all non-owners above ν. Therefore, q̄n(ν) = Φo(ν) and q̄o(ν) = 1− s− F(ν) + Φo(ν) =

1− s− F(ν) + q̄n(ν), where we omit the argument α in Φo and Φn since all investors have α = 1,

and where the second equation follows from using the feasibility condition. Combining these

two equations provide the set of feasible {q̄n, q̄o}: q̄o = Q(q̄n) ≡ 1− s− F(Φ−1
o (q̄n)) + q̄n. Given

the equilibrium properties of Φo and F, we have that Q(0) = 1 − s − F(ν), where ∆(ν) = 0,

Q(s) = 0. Notice that the point Q(s) = 0 is attained in the limit as ν approaches infinity. The

dashed line in Figure 9 represents the feasibility equation, qo = Q(q̄n).

We can follow a similar approach for centrality. For investors with ν < ν, C = 0. And, using
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equation (8) together with the definition of centrality we obtain

C(q̄n, q̄o) =
λ

2Vol
[η + λq̄n]q̄o + [µ + λq̄o]q̄n

µ + η + λ[q̄o + q̄n]
for any investor with ν ≥ ν .

This equation gives downward sloping centrality level curves in the space of (q̄n, q̄o). These level

curves are represented as solid lines in Figure 9. Intuitively, an investor’s centrality increases if

they have a higher q̄o or q̄n.

Figure 9: Equilibrium pairs q̄n and q̄o and centrality level curves

q̄n

q̄o

1− s− F(ν)

s

•
(q̄∗n, q̄∗o )

Notes: The figure presents the equilibrium feasibility set q̄0 = Q(q̄n), and the centrality level curves c̃ = C(q̄n, q̄o),
for different centrality levels c̃. The point {q̄∗n, q̄∗o} represents the most central investor.

Now consider the following problem

(q̄n, q̄o) = max
(q̄n,q̄o)

{
C(q̄n, q̄o); subject to q̄o = Q(q̄n) and q̄n ∈ [0, s]

}
. (44)

The solution to problem 44 exists because the set of (q̄n, q̄o) satisfying q̄o = Q(q̄n) and q̄n ∈ [0, s]

is compact, and the function C(q̄n, q̄o) is continuous in this set.

It is easy to see the C(q̄n, q̄o) is differentiable in both q̄o and q̄n. If in addition Q(q̄n) is

differentiable for q̄n ∈ [0, s], then we can replace q̄o = Q(q̄n) in C(q̄n, q̄o) and then optimize

by using the first order condition. Later, we show that the solution must be interior, satisfying

q̄n ∈ (0, s).

The function Q(q̄n) = 1− s− F(Φ−1
o (q̄n)) + q̄n is differentiable if Φo is differentiable, and the

derivative bounded away from zero. Given that q̄n(ν) = Φo(ν) and q̄o(ν) = 1− s− F(ν) + Φo(ν),

q̄o and q̄n are continuous in ν. Further, since Φo(ν) =
∫ ν
−∞ φo(ν̃)dν̃ and, from (8) we have that

φo(ν) =
η+λq̄n(ν)

η+µ+λq̄o(ν)+λq̄n(ν)
f (ν), we obtain that Φo(ν) is differentiable. Thus, Q(q̄n) is differentiable.
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We can then replace the above expressions into the definition of Q(q̄n) and obtain that

Q′(q̄n) = 1− f (Φ−1
o (q̄n))

φo(Φ−1
o (q̄n))

= 1− η + µ + λq̄o + λq̄n

η + λq̄n
= −µ + λq̄o

η + λq̄n
.

Similarly, replacing q̄o = Q(q̄n) in C(q̄n, q̄o) and defining C̃(q̄n) ≡ 2Vol
λ C(q̄n, Q(q̄n)) provides

C̃′(q̄n) =
2Vol

λ

[
∂C(q̄n, q̄o)

∂q̄n
+

∂C(q̄n, q̄o)

∂q̄o
×Q′(q̄n)

]
.

Note that
λ

2Vol
∂C(q̄n, q̄o)

∂q̄n
=

[µ + 2λq̄o]{µ + η + λ[q̄o + q̄n]} − {[η + λq̄n]q̄o + [µ + λq̄o]q̄n}λ
{µ + η + λ[q̄o + q̄n]}2

=
µλq̄n + [µ + 2λq̄o]{µ + η + λq̄o} − {ηq̄o + µq̄n}λ

{µ + η + λ[q̄o + q̄n]}2

=
[µ + 2λq̄o]{µ + η + λq̄o} − ηq̄oλ

{µ + η + λ[q̄o + q̄n]}2 =
[µ + λq̄o]{µ + η + λq̄o}+ λq̄o{µ + λq̄o}

{µ + η + λ[q̄o + q̄n]}2

= [µ + λq̄o]
µ + η + 2λq̄o

{µ + η + λ[q̄o + q̄n]}2 ,

and,

λ

2Vol
∂C(q̄n, q̄o)

∂q̄o
= [η + λq̄n]

µ + η + 2λq̄n

{µ + η + λ[q̄o + q̄n]}2 .

Then,

C̃′(q̄n) =
2Vol

λ

[
∂C(q̄n, q̄o)

∂q̄n
+

∂C(q̄n, q̄o)

∂q̄o
×Q′(q̄n)

]
= [µ + λq̄o]

µ + η + 2λq̄o

{µ + η + λ[q̄o + q̄n]}2 − [η + λq̄n]
µ + η + 2λq̄n

{µ + η + λ[q̄o + q̄n]}2
µ + λq̄o

η + λq̄n

=
2λ[µ + λq̄o]

{µ + η + λ[q̄o + q̄n]}2 (q̄o − q̄n).

Because in the interior the maximum requires C̃′(q̄n) = 0, in the interior the maximum is attained

at q̄o = Q(q̄n) = q̄n.

We now show that centrality is not maximized in the corners. Given that in the interior we

found a candidate solution satisfying C̃′(q̄n) = 0, it suffices to show that C̃′(0) > 0 and C̃′(s) < 0.

Because Q(q̄n) is differentiable for q̄n ∈ [0, s], it is also continuous. For q̄n = 0 we have that

Q(0) = 1− s− F(
¯
ν). From the equilibrium equations we obtain that ṡ = η[1− s− F(

¯
ν)]− µs = 0

which implies that in a stationary equilibrium s = η
µ+η [1 − F(

¯
ν)]. In turn, this implies that

Q(0) = 1 − s − F(
¯
ν) = µ

µ+η [1 − F(
¯
ν)] > 0, so that C̃′(0) > 0. Since the derivative is strictly

positive at the lower bound then you can increase the obj function by increasing q̄n so the lower

bound cannot be a solution. When q̄n = s we have that

Q(s) = 1− s− lim
s̃↗s

F(Φ−1
o (s̃)) + s = 1− s− lim

ν↗∞
F(ν) + s = 1− s− 1 + s = 0.

Then, C̃′(s) < 0. Since the derivative is strictly negative at the upper bound you can increase the
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obj function by decreasing q̄n so the upper bound cannot be a solution.

Because Q(q̄n)− q̄n is continuous in q̄n ∈ [0, s], Q(0)− 0 > 0 and Q(s)− s < 0, there exists

q̄∗n ∈ (0, s) such that q̄∗o = Q(q̄∗n) = q̄∗n, and since Q′(q̄n) = − µ+λq̄o
η+λq̄n

< 0, q̄∗n is unique. Finally,

replacing q̄∗o = Q(q̄∗n) = q̄∗n in the definition of sn(ν∗) provides

sn(ν
∗) =

[
1 +

η + λq̄n(ν∗)

µ + λq̄n(ν∗)

]−1

.

Now we turn to Proposition 4. Note also that

sn(1, ν) =
[µ + λq̄o(1, ν)]q̄n(1, ν)

[η1{∆(1,ν)≥0} + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)
.

From the equation above, sn(1, ν) is strictly increasing in ν for any ν such that ∆(1, ν) > 0. That

is because in this case,

dsn(1, ν)

dν
=

{
[µ + λq̄o(1, ν)]{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}

{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}2

− [µ + λq̄o(1, ν)]q̄n(1, ν){λq̄o(1, ν) + [µ + λq̄o(1, ν)]}
{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}2

}
× dq̄n(1, ν)

dν

+

{
λq̄n(1, ν){[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}
{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}2

− [µ + λq̄o(1, ν)]q̄n(1, ν){[η + λq̄n(1, ν)] + λq̄n(1, ν)}
{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}2

}
×Q′(q̄n)

dq̄n(1, ν)

dν

=

{
[µ + λq̄o(1, ν)]ηq̄o(1, ν)

{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}2

}
× dq̄n(1, ν)

dν︸ ︷︷ ︸
>0

−
{

µq̄n(1, ν)[η + λq̄n(1, ν)]

{[η + λq̄n(1, ν)]q̄o(1, ν) + [µ + λq̄o(1, ν)]q̄n(1, ν)}2

}
×Q′(q̄n)

dq̄n(1, ν)

dν︸ ︷︷ ︸
>0

.

Since dq̄n(1,ν)
dν = φo(1, ν) = η+λq̄n(1,ν)

η+µ+λq̄o(1,ν)+λq̄n(1,ν) f (1, ν) > 0, and Q′(q̄n) = − µ+λq̄o
η+λq̄n

< 0, we can

conclude that dsn(1,ν)
dν > 0.

If sn(1, νa) < sn(1, νb) ≤ sn(1, ν∗), because dsn(1,ν)
dν > 0, we must have that ν∗ ≥ νb > νa. Now,

from the proof of Proposition 5, we know that

C̃′(q̄n) =
2λ[µ + λq̄o]

{µ + η + λ[q̄o + q̄n]}2 (q̄o − q̄n).

We know that q̄o(1, ν∗) = q̄n(1, ν∗). Therefore, because dq̄n(1,ν)
dν > 0 and dq̄o(1,ν)

dν = Q′(q̄n(1, ν)) dq̄n(1,ν)
dν <

0, q̄o(1, ν) > q̄n(1, ν) for all ν ≤ ν∗ and centrality is increasing in ν. Thus, we conclude that

c(1, νa) < c(1, νb) ≤ c(1, ν∗). The opposite argument works if sn(1, νa) > sn(1, νb) ≥ sn(1, ν∗). In

this case, ν∗ ≤ νb < νa and centrality is decreasing in ν because q̄o(1, ν) < q̄n(1, ν).
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Proof of Propositions 6. To keep the notation short, define xa = x(θa) and xb = x(θb) for any

function x of θ. That is, sa
n = sn(θa), sb

n = sn(θb) and so on.

First note that, since sa
n = sb

n ∈ (0, 1), we must have that q̄a
o, q̄b

o, ∆a, ∆b > 0. That is because

the measure of owners with negative reservation value has to be zero otherwise they would just

dispose of the asset and sn would be equal to zero.

Now, suppose by the way of contradiction that cb ≥ ca. From the definition of centrality and

using equilibrium equation (8), we have that

cb =
λ

2Vol
[η + λq̄b

n]q̄b
o + [µ + λq̄b

o]q̄b
n

µ + η + λ[q̄b
o + q̄b

n]
≥ λ

2Vol
[η + λq̄a

n]q̄a
o + [µ + λq̄a

o]q̄a
n

µ + η + λ[q̄a
o + q̄a

n]
= ca .

The centrality map above is increasing in both q̄n and q̄o. As a result, for the inequality above to

hold it is necessary that one of the three statements hold: (i) q̄b
n ≥ q̄a

n and q̄b
o ≥ q̄a

o, (ii) q̄b
n > q̄a

n and

q̄b
o < q̄a

o, or (i) q̄b
n < q̄a

n and q̄b
o > q̄a

o.

Statement (i) is a contradiction. Given that αa > αb, the only way that we can have q̄b
n ≥ q̄a

n

is if ∆b > ∆a. At the same time, given that αa > αb, the only way that we can have q̄b
o ≥ q̄a

o is if

∆b < ∆a. Which is a contradiction because we cannot have ∆b > ∆a and ∆b < ∆a.

Statements (ii) and (iii) also imply a contradiction. To see this, note that, from equation (16)

we have

sa
n =

[µ + λq̄a
o]q̄a

n
[η + λq̄a

n]q̄a
o + [µ + λq̄a

o]q̄a
n
=

[µ + λq̄b
o]q̄b

n

[η + λq̄b
n]q̄b

o + [µ + λq̄b
o]q̄b

n
= sb

n

But note that
∂

∂q̄n
· [µ + λq̄o]q̄n

[η + λq̄n]q̄o + [µ + λq̄o]q̄n
=

[µ + λq̄o]{[η + λq̄n]q̄o + [µ + λq̄o]q̄n} − [µ + λq̄o]q̄n[µ + 2λq̄o]

{[η + λq̄n]q̄o + [µ + λq̄o]q̄n}2

=
[µ + λq̄o]ηq̄o

{[η + λq̄n]q̄o + [µ + λq̄o]q̄n}2 > 0, and

∂

∂q̄o
· [µ + λq̄o]q̄n

[η + λq̄n]q̄o + [µ + λq̄o]q̄n
=

λq̄n{[η + λq̄n]q̄o + [µ + λq̄o]q̄n} − [µ + λq̄o]q̄n[η + 2λq̄n]

{[η + λq̄n]q̄o + [µ + λq̄o]q̄n}2

=
λq̄n[η + λq̄n]q̄o − [µ + λq̄o]q̄n[η + λq̄n]

{[η + λq̄n]q̄o + [µ + λq̄o]q̄n}2

=
−µq̄n[η + λq̄n]

{[η + λq̄n]q̄o + [µ + λq̄o]q̄n}2 < 0 .

But then, q̄b
n > q̄a

n and q̄b
o < q̄a

o would imply sa
n < sb

n, which is a contradiction. And q̄b
n < q̄a

n and

q̄b
o > q̄a

o would imply sa
n > sb

n, which is again a contradiction.

Therefore, we cannot have that cb ≥ ca and must have ca > cb. Which concludes the proof.

Proof of Lemma 5. Pick any θ = (α, ν) such that ∆(θ) > 0. First, let us consider the case where

α = αI = 1. This investor buys an asset with probability one whenever he has the bargaining

power and there are gains from trade. In the same way, he sells an asset with probability one

whenever he has the bargaining power and there are gains from trade. For any other θ̂, either
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we have ∆(θ) > ∆(θ̂), ∆(θ) < ∆(θ̂) or ∆(θ) = ∆(θ̂). The measure of cases in which ∆(θ) = ∆(θ̂)

is zero. In the other two cases, we have that q(θ, θ̂) is bounded below by ξo > 0 and q(θ̂, θ) is

bounded below by ξn > 0. So we can conclude that np(θ) = 1.

Now, let us consider the case where α = αl = 0. Then, by Lemma 1, we know that

asko(αl , ∆(θ)) > ∆(θ). Define θε = θ + (α, ν) = (α, ν + ε). Note that we can take ε̄ > 0 small

enough such that bidn(αl , ∆(θε)) < ∆(θ) for all ε ∈ (0, ε̄). That is because the objective function

that defines the bid is continuous and bidn(αl , ∆(θε)) is increasing in the reservation value, which

is increasing in ν. As a result, the investor type θ = (α, ν) won’t sell or buy to any investor type

θε for ε ∈ (0, ε̄). Since F has positive density everywhere, we then have that np(θ) < 1.

Finally, a similar argument provides npout(θ) > npout(θ̂) and npin(θ) > npin(θ̂).

Proof of Proposition 7. This result is straightforward. For every θ in Θ̄, by Proposition 3, we

have that α = 1. Then, from Lemma 5, we must have np(θ) = 1 for all θ in Θ̄ so∫
θ∈Θ̄ np(θ) f (θ)dθ∫

θ∈Θ̄ f (θ)dθ
=

∫
θ∈Θ̄ f (θ)dθ∫
θ∈Θ̄ f (θ)dθ

= 1.

Lastly, from 5, we must have np(θ) < 1 for all θ such that α = 0. But the set of θ such that α = 0

cannot belong to Θ̄. So,∫
θ /∈Θ̄ np(θ) f (θ)dθ∫

θ /∈Θ̄ f (θ)dθ
<

∫
θ /∈Θ̄ f (θ)dθ∫
θ /∈Θ̄ f (θ)dθ

= 1 =

∫
θ∈Θ̄ np(θ) f (θ)dθ∫

θ∈Θ̄ f (θ)dθ
.

Proof of Proposition 8. Equation 18 can be written as

st(θ) =
φo(θ)

f (θ)

∫
φn(θ̂)

f (θ̂)
q(θ, θ̂)dF(θ̂) +

φn(θ)

f (θ)

∫
φo(θ̂)

f (θ̂)
q(θ̂, θ)dF(θ̂)

=
φo(θ)

f (θ)

∫
q(θ, θ̂)dΦn(θ̂) +

φn(θ)

f (θ)

∫
q(θ̂, θ)dΦo(θ̂)

=
φo(θ)q̄o(θ)

f (θ)
+

φn(θ)q̄n(θ)

f (θ)
=

2Vol
λ

c(θ),

where the first and second equalities are just from rewriting the equation, the third equality is

from applying equations 9 and 9, and the fourth equality comes from the definition of centrality

given by equation 15.

Proof of Proposition 9. Suppose by the way of contradiction that the result does not hold. Then,

we either have Vo(θ) ≥ Vo(θ̂) or Vn(θ) ≥ Vn(θ̂), or both.

Assume that Vo(θ) ≥ Vo(θ̂). From equation (5), this implies that πo(θ) ≥ πo(θ̂). Since α̂ > α,

investor type θ can only have a higher profit when selling the asset if he has a lower reservation

value for it. That is, ∆(θ) < ∆(θ̂). Given that the investor with higher expertise have an advantage

when selling the asset and ∆(θ̂) > ∆(θ), we then have that Vn(θ̂) > Vn(θ) ⇔ −Vn(θ) > −Vn(θ̂).
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Adding up the two inequalities Vo(θ) ≥ Vo(θ̂) and −Vn(θ) > −Vn(θ̂) we obtain that

∆(θ) = Vo(θ)−Vn(θ) > Vo(θ̂)−Vn(θ̂) = ∆(θ̂).

Which contradicts our previous conclusion that ∆(θ) < ∆(θ̂). The same argument applies for the

case that Vn(θ) ≥ Vn(θ̂).

Proof of Lemma 6. We can write πo(θ)− πo(θ̂) from (3) as

πo(θ)− πo(θ̂) = (α− α̂)
∫ (

∆̃n − ∆o
)

1{∆̃n≥∆o} − (asko − ∆o) 1{∆̃n≥asko}d
Φn(θ̃)

1− s

= (α− α̂)
∫ (

∆̃n − asko
)

1{∆̃n≥asko} +
(
∆̃n − ∆o

)
1{asko>∆̃n≥∆o}d

Φn(θ̃)

1− s
> 0.

Therefore, α > α̂ implies πo(θ) > πo(θ̂). The argument for πn is analogous. The only difference

for πn is that, in equilibrium, φn is zero when ∆(θ) < 0. This implies that non-owners with

reservation value below zero all have zero probability to buy an asset. That is why the strict

inequality only holds when ∆(θ) = ∆(θ̂) > 0.

A.5 Extension with 13-F investors

In this section we provide a formal derivation of the results discussed in Section 6.2.1. As a

reminder, the distribution of types across 13-F and non-13-F investors is given by F = ω13F13 +

ωn13Fn13. For a given filing window [T0, T0 + T], each 13-F investor draws an initial date for the

filing window, T0 ≥ t0, with Poisson arrival γ > 0. Initial filing dates are independent from each

other and are not known beforehand. The information revealed by filing a 13-F is imperfect. In

a meeting after a 13-F investor files, ρ ∈ (0, 1] is the probability that the report perfectly reveals

the type of the 13-F investor to the counterparty. This shock is independent and identically

distributed across 13-F investors and meetings and is independent from other shocks.

An equilibrium is defined in the same way as the equilibrium definition in 1, but adjusting

for the fact that the objects are time dependent instead of been defined in steady state. There

is also an extra equilibrium object which is the choice of a filing date T̃0 given a filing window

[T0, T0 + T]. We find that the optimal filing date is T̃0 ≡ T0 + T for all investors. And that strategy

is strictly better than picking any other filing date for all investors with positive reservation

value—that is, investors who trade with strictly positive probability.

Proof of Proposition 10. The result regarding the delay choice in Proposition 10 is straightfor-

ward and we just provide a sketch of the proof here. Filing Form 13-F cannot make the investor

better off, as truthfully revealing her type in a meeting is always an option. Moreover, if she has

strictly positive reservation value, then she loses the information gains that she can obtain when

her trade counterparty sets up a price under private information.
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Given a delay T, we now consider how a filing affects the 13-F investor’s conditional prob-

ability of trade with a given set of counterparties, Θ̂ ⊆ Θ. The conditional probability the 13-F

investor trades with counterparties in Θ̂ at time t is given by

q̄13F
t (θ; Θ̂) = ωo q̄13F

ot (θ; Θ̂) + ωn q̄13F
nt (θ; Θ̂), (45)

where q̄13F
ot (θ; Θ̂) and q̄13F

nt (θ; Θ̂) are the conditional probabilities the 13-F investor sells an asset

to and buys an asset from a counterparty in Θ̂, respectively, and ωo,t = φo,t(θ)/ f (θ) and ωn,t =

1− ωo,t are weights that give the probability of being an owner or non-owner, respectively. We

omit the expressions for q̄13F
ot (θ; Θ̂) and q̄13F

nt (θ; Θ̂), but they follow from (9)-(11) replacing the

distributions φn and φo with conditional distributions with support over Θ̂.

It is useful to define the discontinuity in trade probability for an investor of type θ trading

with a group of investors Θ̂ as D13F
t (θ; Θ̂) = limε↘0 q̄13F

t+ε(θ, Θ̂)− q̄13F
t−ε(θ; Θ̂). We are interested in

the effect of a 13-F filing on this discontinuity. That is, consider a investor who received a Poisson

shock to file the 13-F, and chose a delay t̃ = T. In this case, we can write the discontinuity in

trade probability in closed form as,

D13F
T (θ; Θ̂) = ωoξnEθ̂∈Θ̂

{
ρ(1− αn)1{∆̂n≥∆(θ)>bid13F

T (∆̂n;α)}

}
+ ωnξoEθ̂∈Θ̂

{
ρ(1− αo)1{ask13F

T (∆̂o ;α)>∆(θ)≥∆̂o}

}
. (46)

The expectation operator in the first and second term of (46) are conditional expectations over

θn ∈ Θ̂ and θo ∈ Θ̂, respectively. The effect of a 13-F filing depends positively on how informative

a filing is, ρ, and negatively on the screening expertise of the set of counterparties, αn and

αo. Intuitively, if the set of counterparties includes investors with higher screening ability, the

discontinuity is lower.

We now prove the following results from Proposition 10: for a 13-F investor who files with

delay t̃ = T, (i) a 13-F filing causes a strictly-positive jump in the probability of trade with

periphery investors, (ii) a 13-F filing causes no change in the probability of trade with core

investors, and (iii) as a result of (i) and (ii), a 13-F filing shifts the probability of trade towards

periphery investors relative to core investors.

Both results (i) and (ii) follow direct from equation (46), Lemmas 1 and 2 which shows that

there is a distortion on bid and ask implied by private information, and Proposition 3 which

states that the central traders have α = αI = 1. According to Proposition 3, all investors in Θc

have α = αI = 1. Therefore, by equation (46), we have to have D13F
T (θ; Θc) = 0. Moreover, all

investors with α < αI = 1 are in Θp. Therefore, again by equation (46) and using the implied

distortion in bid and ask shown in Lemmas 1 and 2, D13F
T (θ; Θp) > 0. Result (iii) follows directly

from (i) and (ii).

It is worth mentioning that information revelation can potentially increase the probability of

trade with both core and periphery investors if αI < 1. However, if αI is close to 1, it must
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have a greater impact on the probability trade with periphery investors relative to core investors

precisely because core investors already have an informational advantage. We do not provide

the result for αI < 1 to keep the presentation simpler but can provide it under request.

B Appendix: Additional Empirical Results

B.1 Merging the CDS and 13-F datasets

We merge CDS trade data with 13-F filings using the names of the institution of each trader.

Since the institutions’ names do not match perfectly we approximate them using Levenshtein-

edit distance. The Levenshtein edit distance is a measure of approximateness between strings:

it is the total number of insertions, deletions and substitutions required to transform one string

into another. We match the names with Levenshtein-edit distance less than 0.5. We only use

the first three words of the identifiers when computing the Levenshtein edit distance because

this is where the identifying parts of the institution’s name tend to be.26 We manually check

the matched names to make sure there are no bad matches, which is feasible given there are not

many institutions filing that also trade CDS, see Table 1.

In some cases, we find multiple DTCC account IDs, but only one CIK ID from EDGAR. That

is, not everything is one-to-one between the data sets.27 These cases happen because the DTCC

IDs can be granular, while the 13-F filings tend to be more at the institution level. We keep the

institution ID from the DTCC data, so one filing that is associated with a CIK in the EDGAR

data, will be associated with multiple DTCC IDs in our data.

B.2 Filing around the 45 day limit

Table 6 reports the results of (19) where we define the independent variable Fj,t−x to be a dummy

variable equal to one if institution j filed a 13-F report in the x-weeks previous to week t and

that report was made between 42 and 48 days from the beginning of the quarter, a symmetric

window around the cutoff.28

We find that narrowing the test of a 13-F to only those around the deadline strengthens our

baseline results, suggesting that some degree of endogeneity for short delays. Whether looking

at windows of one or two weeks and regardless of controlling for trade in the time period just

26After the first three words, there tend to be “filler” words such as "LTD" - "LIMITED", "CORP" or "CORPORA-
TION".

27For example, the Edmond De Rothschild Holdings has an unique CIK in the EDGAR data, and it is associated with
four DTCC IDs: EDMOND DE ROTHSCHILD EMERGING BONDS, EDMOND DE ROTHSCHILD Bond Allocation,
EDMOND DE ROTHSCHILD QUADRIM 8 and EDMOND DE ROTHSCHILD QUADRIM 4.

28We extend to 48 days because sometimes the deadline falls on a weekend or holiday. In these cases, the SEC
extends the deadline to the first business day after 45 days past the beginning of the quarter. Likewise, we include the
42 days as, if the 45-day deadline falls on a Monday, an institution may file on Friday of the prior week.
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before a report, we find a positive and significant impact of a 13-F filing on trade with periphery

institutions and no effect on trade with core institutions. The coefficient estimates increase, nearly

doubling in most specifications. For instance, if we compare column (1) in Table 6 to column (4)

in Table 2, we find that narrowing the focus to 13-F reports around the deadline increases the

impact of a 13-F report on trade with the periphery from 13.8 percentage points to 21.4 percentage

points. Similarly the differential effect on trade with the periphery relative to the core increases

from 14.8 percentage points to 25.8 percentage points. As much as these regressions control for

endogeneity in filing delay, we see these results as confirming our theory.

Table 6: Impact of a 13-F filing on trade (42-48 day filing delay).

x = 1 week x = 2 weeks
(1) (2) (3) (4)

Dependent Variable: Trade with Periphery, βp

Filed in week t− x, Fi,t−x 0.214** 0.216** 0.281*** 0.281***
(0.106) (0.107) (0.080) (0.080)

Filed in week t + x, Fi,t+x 0.017 0.005
(0.107) (0.081)

R-squared 0.198 0.198 0.198 0.198

Dependent Variable: Trade with Core, βc

Filed in week t− x, Fi,t−x -0.043 -0.050 0.008 0.003
(0.077) (0.077) (0.057) (0.058)

Filed in week t + x, Fi,t+x -0.092 -0.027
(0.077) (0.058)

R-squared 0.204 0.204 0.204 0.204

Dependent Variable: Difference, βp − βc

Filed in week t− x, Fi,t−x 0.256** 0.266** 0.273*** 0.278***
(0.104) (0.104) (0.078) (0.079)

Filed in week t + x, Fi,t+x 0.107 0.032
(0.104) (0.079)

R-squared 0.119 0.119 0.119 0.119

Fixed Effects
Week − index yes yes yes yes
Institution − quarter yes yes yes yes

Observations 460,512 458,712 458,640 455,040

Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS
indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4.
The independent variables, Fj,t−x/Frequency and Fj,t+x/Frequency, are normalized dummies, where the
dummies are equal to one if institution j filed a 13-F within the previous x weeks and within the following
x weeks, respectively, to week t, conditional on filing near the filing deadline defined as 42 to 48 days
past the beginning of the quarter. The two dependent variables are dummies if institution j traded CDS
index i in week t with a periphery and core institution, respectively. Test on difference: tests whether the
difference in the coefficients is equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.
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B.3 Trading activity around the filing date

Table 7: Impact of 13-F filing on trade in week(s) after report relative to before.

x = 1 week x = 2 weeks
(1) (2) (3) (4)
Dependent Variable: Trade with Periphery, βp

Filed in week t− x, Fi,t−x 0.237*** 0.140* 0.271*** 0.149**
(0.075) (0.074) (0.059) (0.060)

Filed in week t + x, Fi,t+x 0.124* 0.027 0.124** 0.018
(0.075) (0.074) (0.059) (0.060)

Prob>F: β1 = β2 0.266 0.259 0.058 0.087
R-squared 0.176 0.198 0.176 0.198

Dependent Variable: Trade with Core, βc

Filed in week t− x, Fi,t−x 0.102* -0.016 0.137*** -0.018
(0.054) (0.054) (0.042) (0.043)

Filed in week t + x, Fi,t+x 0.053 -0.065 0.130*** -0.022
(0.054) (0.054) (0.043) (0.043)

Prob>F: β1 = β2 0.499 0.497 0.891 0.940
R-squared 0.183 0.204 0.183 0.204

Dependent Variable: Difference, βp − βc

Filed in week t− x, Fi,t−x 0.135* 0.156** 0.133** 0.167***
(0.073) (0.073) (0.058) (0.058)

Filed in week t + x, Fi,t+x 0.072 0.092 -0.005 0.040
(0.073) (0.073) (0.058) (0.058)

Prob>F: β1 = β2 0.522 0.516 0.066 0.091
R-squared 0.097 0.119 0.097 0.119
Fixed Effects

Week − index yes yes yes yes
Institution yes no yes no
Institution − quarter no yes no yes

Observations 458,640 458,640 454,896 454,896

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading
CDS indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-
2017Q4. The independent variables, Fj,t−x/Frequency and Fj,t+x/Frequency, are normalized dummies, where
the dummies are equal to one if institution j filed a 13-F within the previous x weeks and within the following
x weeks, respectively, to week t. The two dependent variables are dummies if institution j traded CDS index
i in week t with a periphery and core institution, respectively. Test on difference: tests whether the difference
in the coefficients is equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

In Table 7, we add an additional regressor to (19) that controls for trade in the time period

just prior to a 13-F filing,

Yijt = β1
Fj,t−x

Frequency
+ β2

Fj,t+x

Frequency
+ Fixed Effectsjit + εjit, (47)

where, as before, Fj,t−x is a dummy equal to one if institution j filed a 13-F report in the x-weeks

previous to week t and Fj,t+x is a dummy equal to one if institution j filed a 13-F report in the

x weeks following week t. The coefficient β2 should identify trade activity immediately before
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a report. For instance, if front-running is a concern of 13-F filers that trade CDS indexes, then

β2 > 0 to indicate that institutions trade relatively higher immediately before reporting. Then,

as suggested by Proposition 10, we should find an increase in the probability of trade in the time

period after relative to the time period before a report, or β1 > β2.

We focus on the sample of filers trading US CDS indexes and report results using the two

sets of fixed effects from above. Columns (1) and (2) of Table 7 look at the probability of trade in

the week before versus the week after the week of the 13-F filing. Similarly, columns (3) and (4)

broaden the horizon to two weeks before and after.

As in Table 2, the first row of the table shows that the probability of trade with periphery

institutions increases in the week (two weeks) after a filing. In the week (two weeks) prior to

the filing, the probability of trade with non-central institutions is also slightly above the average,

but importantly the magnitude is always smaller than in the time period after. In fact, when we

control for institution-quarter fixed effects, we find no statistical effect on trade with periphery

institutions just before a report. However, we find a report increases the probability of trade with

non-central institutions by around 14-15% in the week to two weeks just after a report.

B.4 Can a model of signaling explain the observed trade outcomes?

Consider a model where, as in Duffie et al. (2005), the asset supply is exogenous, investors meet

randomly, and the investors’ type is observable by trade counterparties in a meeting. A fraction

of investors have valuation νl and a meet a trade counterparty at rate λH, while the rest of the

investors have valuation νt ∈ {νl , νh}, with νl < νh and Pr[νt = νl ] = Pr[νt = νh] = 1/2 for all t,

and meet a trade counterparty at rate λL < λH. That is, there are three types of investors in this

economy: hL investors (high valuation, low speed), lL investors (low valuation, low speed), and

lH investors (low valuation, high speed).

hL investors buy from lL and lH investors –hL investors are buyers. lL investors sell to lH and

hL investors –lL investors are sellers. lH investors buy from lL investors and sell to hL investors

–lH investors are intermediaries. Because λL < λH, lL and hL investors populate the periphery,

while lH investors populate the core (Üslü, 2019; Farboodi et al., 2017). The assumption that

the lH investors have persistent valuation νl imply that the identity of the core institutions is

not changing through time. This is not only consistent with the way we want to interpret core

institutions in our model but, more importantly, consistent with the data, where the identity of

the institutions populating the core is highly persistent.

In our data, almost all institutions that file Form 13-F are periphery institutions in CDS trad-

ing markets.29 Thus, consider now the experiment where an investor populating the periphery

(lL or hL, at a given point in time) must file Form 13-F within a window of time [T0, T0 + T],

29In the data, 99.7% of filings are done by non top-5 institutions.
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where T0 + t̃ is the filing date, t̃ denoting the delay chosen by the investor. Further, assume

that, when the investor files Form 13-F, other investors can use semi-direct search towards the

filing investor: when searching for this investor, they search for the filing investor at rate λH.

Why would investors search for the investor that filed form 13-F? In our theory, filing does not

affect matching probabilities, but affects trade outcomes and terms of trade. Because of complete

information, this cannot happen in the model we are discussing here. Rather, the act of filing

can be used by the 13-F investor to convey information to potential trade counterparties prior to

meeting, and thus induce them to search for her. That is, the 13-F investor can delay filings in

such a particular way to signal her trade interests to the market. In this model, dispersion in the

observed distribution of delays is the result of optimal signaling.

There are four possible signaling outcomes: (i) the investor only files when she is hL and she

is not holding an asset, signaling that she is a buyer, (ii) the investor only files when she is lL

and she is holding an asset, signaling that she is a seller, (iii) the investor files when she is hL

and she is not holding an asset, or when she is lL and she is holding an asset, signaling that she

is mismatched and, (iv) the investor files at random times, independently of her valuation and

holding status.

The objective of signaling is two-fold. First, signaling increases the probability of matching,

as it induces other investors to direct their search towards the 13-F investor. Second, conditional

on a meeting, signaling increases the probability of a successful match. In case (i), only lL and

lH investors that are holding an asset search for the 13-F investor. In case (ii), only lH and hL

investors not holding an asset search for for the 13-F investor. And in case (iii) the 13-F investor

avoids potential meetings with lL investors not holding an asset, and hL investors.

Implications and the baseline regression. When the 13-F investor uses the filing event to

signal her type, she is choosing t̃ strategically. Thus, this model has the potential to explain the

heterogeneity in delays observed in the data using an endogenous mechanism. Also, as a result of

signaling, trade probability goes up after filing, consistent with the finding that trade probability

goes up when trading with both core and periphery investors (Table 2). Further, the fact that,

when searching for the filing investor, all other investors search at rate λh implies that, relative

to before filing, the trade probability increases more with periphery than core investors. As a

result, the simple model presented here is potentially able to reproduce our baseline regressions.

Other tests to disentangle the two theories. In the Buyer’s signaling case, we should observe

a pronounced increase in buying activity by 13-F investors after filing. In the Seller’s signaling

case, we should observe a pronounced increase in selling activity by 13-F investors after filing.

In the mismatched case, we should observe an increase in both buying and selling activity after

filing. Table 8 presents trade activity statistics around filing dates, for those institutions that

file Form 13-F. Column 1 shows that around half of trades that occur in a window of 2 weeks

(starting one week before filing, and ending one week after filing) involve the investor buying an
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asset, while the other half involve the investor selling an asset.30 Conditional on buying an asset,

56% of trades occur after filing and, conditional on selling an asset, 51% of trades occur after

filing. The fact that we see a considerable amount of buying and selling activity before and after

filing suggests that the the Buyer’s and Seller’s signaling cases do not explain why institutions

delay their filings: institutions should defer and buy or sell after filing. Our model, and the

mismatch signaling equilibrium in the simple model, are both consistent with large buying and

selling activity before and after filing events.

Table 8: Buying and selling activity for filers around filing events

1-week 2-weeks

All trades - full window (before & after) 5,487 11,067
Trades in window after filing 2,991 5,758
Trades in window before filing 2,496 5,309

Trades when buying - full window (before & after) 2,773 5,624
Trades in window after filing 1,565 3,001
Trades in window before filing 1,208 2,623

Trades when selling - full window (before & after) 2,715 5,530
Trades in window after filing 1,426 2,757
Trades in window before filing 1,289 2773

Notes: Sample includes trades by investors filing form 13-F that trade US indexes. 1-week: For a given filing event, defines
a one-week window of trades, either before or after filing. In this case, a full window has two weeks, one week before filing,
and one week after filing. 2-weeks: For a given filing event, defines a two-week window of trades, either before or after
filing. In this case, a full window has four weeks, two weeks before filing, and two weeks after filing.

Related to the last exercise, we can repeat our baseline regressions, but for buyers and sellers

independently. If we were to find that filing Form 13-F affects the trade probability only of buyers

or sellers, but not of both, then that would provide evidence consistent with the seller’s signaling

equilibrium, or the buyer’s signaling equilibrium. In Table 9, we report the results of the baseline

regressions, (19), where we now define the dependent variables Dc/p
ijt as dummies equal to one if

institution j traded CDS index i in week t as a buyer or seller, respectively. We are interested if

the effect of trading CDS is active both on the buy and sell side of the market, or is dominated

by one side.

We see that the effect of a 13-F report on trade with the periphery is positive and similar

30Column 2 in Table 8 shows that the results are robust to using a window of 4 weeks, centered at the filing date.
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Table 9: Impact of a 13-F filing on trade, buy-side vs. sell-side

Buy-side Sell-side

(1) (2) (3) (4)

Trade with Periphery, βp

Freqp 0.232*** 0.146* 0.244** 0.150*
(0.088) (0.087) (0.089) (0.089)

R-squared 0.150 0.171 0.148 0.167

Trade with Core, βc

Freqc 0.097 -0.007 0.134** 0.025

(0.067) (0.066) (0.065) (0.065)

R-squared 0.145 0.163 0.144 0.162

Test on difference, βp

Freqp − βc

Freqc 0.135 0.153* 0.110 0.125

(0.089) (0.089) (0.089) (0.089)

Fixed Effects

Week − index yes yes yes yes

Institution yes no yes no

Institution − quarter no yes no yes

Observations 460,512 460,512 460,512 460,512

Sample includes trades of US credit default swap indexes by regulated institutions or those trading
CDS indexes on regulated institutions, that filed a 13-F report at least once in the sample period,
2013Q1-2017Q4. The independent variable is a dummy equal to one if institution j filed a 13-F in
the previous week. The two dependent variables are dummies if institution j traded CDS index
i in week t as a buyer or seller with a periphery or core institution, respectively. We normalize
the coefficients of each regression by the frequency of trading with each group so that coefficients
are comparable. Test on difference: tests whether the difference in the normalized coefficients are
equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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whether on the buy- or sell-side of the market. The effect of a 13-F on trade with the core is

always below the effect with the periphery, although splitting the sample we lose power so the

standard errors increase. The fact that the effect of filing affects the trade probability of both

buyers and sellers and that it affects differentially their trading activity with core and periphery

investors is inconsistent with the the buyer and seller’s signaling equilibria in the simple model,

while in line with what is expected from our model and the mismatched signaling equilibrium.31

The last test exploits the result that in any signaling equilibrium, a delay t̃ < T. To see why

this is the case, consider the scenario where the investor reaches time T0 + T and still needs

to file. Because the investor must file, there is no information content in the act of filing with

delay t̃ = T. As a result, in any signaling equilibrium, t̃ < T. The fact that a large fraction of

filing events involve maximum delays (as previously discussed, 66% of filings exhibit a delay

of 42 to 48 days) is indicative of the inability of the signaling model to account for most of the

variation in the data. Further, Table 6. There, we showed that our baseline results hold with

added strength for those filing events close to the filing limit. This is at odds with the all of the

signaling equilibria in the simple model.

Overall, in this section we ran several tests aimed to study whether a theory of signaling, that

explains the observed endogeneity in filing times that we observe in the data and our baseline

regression, can rationalize all of our our empirical findings without the need of relying on the

mechanism that we explore in our model that builds on private information about private values.

The empirical results presented in this section provide added confidence to the relevance of our

theory to explain the observed empirical regularities of OTC trading in CDS markets. In the

end, what seems to be the crucial feature to explain the empirical regularities is the presence of

private information about private values.

31The proof of Proposition 10 suggests that our results should hold for at least one side of the market, but not necessarily
both depending on the weights ξo and ξn. For instance if ξo = 1, then we should only see the effects of a 13-F report
on the buyer-side of the market. The intuition is if sellers always make the offer, or ξo = 1, then an institution’s private
information is only valuable when they trade with a seller, as a buyer. The opposite is true when ξn = 1.
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C Online Appendix - Not For Publication

In this online appendix we collect theoretical and empirical results of the paper ’An Information-

based theory of financial intermediation’.

C.1 An alternative trade mechanism

In this section, we explore a mechanism that maximizes the expected trade surplus in the bilateral

meeting, as in Myerson and Satterthwaite (1983). The mechanism we currently use—ask and bid

prices that maximize the owner’s and non-owner’s expected surplus, respectively—does not

maximize trade surplus for two reasons. The first reason is the following. Consider a meeting

where the owner designs the trade mechanism, but she does not observe the type of the non-

owner, while the non-owner does observe the type of the owner. In this case, the owner will

distort trade in order to maximize her trade profits, as described in Corollary 1. However, if the

non-owner would have been chosen to design the mechanism, trade surplus would have been

maximized, as the non-owner observes the type of the owner.

The second reason the mechanism we use does not maximize trade surplus relates to the

incentives faced by investors. In a meeting where both owner and non-owner do not observe the

type of their counterparty, Myerson and Satterthwaite (1983) show that there is no mechanism

that implements the ex-post efficient allocation. When either owner or non-owner is chosen to

design the trade mechanism—the owner with probability ξo or the non-owner with probability

ξn—they are both willing to give up total surplus in order to maximize their individual surplus.

Whenever owner or non-owner observes the type of their trade counterparty, ex-post effi-

ciency can be achieved by assigning all the gains from trade to the informed party. When neither

side is informed, the trade mechanism used is the one in Myerson and Satterthwaite (1983). We

show our main results remain unchanged using this alternative mechanism.32

C.1.1 Bilateral trade

We consider a mechanism that maximizes the total gains from trade, or trade surplus, in a

meeting. In any meeting, there are four possible information structures:

1. both owner and non-owner know each other types;

2. the owner knows the non-owner’s type and the non-owner does not know the owner’s

type;

3. the owner does not know the the non-owner’s type and the non-owner knows the owner’s

type; and

32All proofs in this section are variations of previous proofs or directly derived from Myerson and Satterthwaite
(1983), so we omit these proofs here. They are available upon request.
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4. neither owner or non-owner know each other types.

In case i, we can directly apply Nash bargaining since we have complete information. In this

case, we use the same notation as before to represent the bargaining power of investors, with

ξo denoting the owner’s bargaining power and ξn = 1− ξo denotes the non-owner’s bargaining

power. In case ii, to maximize the total surplus in the trade the mechanism just gives all the

bargain power to the owner. Since the owner knows the type of the non-owner, she will sell

the asset whenever the reservation value of the non-owner is above her own and will extract all

the surplus. In a similar way, in case iii, the mechanism just gives all the bargain power to the

non-owner. Since the non-owner knows the type of the owner, she will buy the asset whenever

the reservation value of the owner is below her own and will extract all the surplus in the trade.

In case iv, we have two-sided incomplete information so we apply the mechanism propose by

Myerson and Satterthwaite (1983), which maximizes the expected gains from trade in a meeting.

In order to characterize the outcomes from such mechanism, it is without loss of generality to

focus on direct mechanisms due to the revelation principle. A direct mechanism is a pair of

functions m = (p, x) : [
¯
∆, ∆̄]× [

¯
∆, ∆̄] → [0, 1]×R, where, for given reservation values ∆o and ∆n

of owner and non-owner, p(∆o, ∆n) is the probability of transferring the asset from the owner to

the non-owner, and x(∆o, ∆n) is the transfer from the non-owner to the owner. The mechanisms

are also going to be a function of the screening expertise αo and αn in equilibrium, but we omit

this argument here to keep the notation short.

Let Mo(·; αo) and Mn(·; αn) be the cumulative distribution of reservation values of owner and

non-owner conditional on αo and αn, and mo(·; αo) and mn(·; αn) the respective densities. As

before, we omit the argument αo and αn from the distributions above to keep the notation short.

The mechanism that maximizes the expected gains from trade in the meeting solves

max
m

∫ ∫
p(∆o, ∆n) [∆n − ∆o] dMo(∆o)dMn(∆n) (48)

subject to

IRo : xo(∆o)− po(∆o)∆o ≥ 0; (49)

ICo : xo(∆o)− po(∆o)∆o ≥ xo(∆̂o)− po(∆̂o)∆o; (50)

IRn : pn(∆n)∆n − xn(∆n) ≥ 0 and (51)

ICn : pn(∆n)∆n − xn(∆n) ≥ pn(∆̂n)∆n − xn(∆̂n); (52)

where

xo(∆o) =
∫

x(∆o, ∆n)mn(∆n)d∆n, po(∆o) =
∫

p(∆o, ∆n)mn(∆n)d∆n,

xn(∆n) =
∫

x(∆o, ∆n)mo(∆o)d∆o and pn(∆n) =
∫

p(∆o, ∆n)mo(∆o)d∆o.

Equations (49) and (51) are the usual individual rationality constraints. They guarantee that
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the mechanism generates enough incentives for both agents to participate. Equations (50) and

(52) are the usual incentive compatibility constraints. They guarantee that the mechanism gener-

ates enough incentives for both agents to truthfully reveal their reservation values.

C.1.2 Expected gains from trade

The expected gains from trade of a type θo owner in a meeting is

πo(θo) =
∫ {

αo (1− αn + αn/2) [max(∆o, ∆n)− ∆o]

+ (1− αo)(1− αn) [x(∆o, ∆n)− p(∆o, ∆n)∆o]
}

d
Φn(θn)

1− s
, (53)

and the expected gains from trade of a type θn non-owner in a meeting is

πn(θn) =
∫ {

αn (1− αo + αo/2) [max(∆o, ∆n)− ∆o]

+ (1− αn)(1− αo) [p(∆o, ∆n)∆n − x(∆o, ∆n)]
}

d
Φo(θo)

s
. (54)

The expected gains from trade described in (53) and (54) are analogous to the ones described

in (53) and (54). The difference is how investors split the trade surplus. Here, trade occurs

according to the arrangement discussed in subsection C.1.1, where transfers are designed to

maximize expected surplus.

C.1.3 Value functions and reservation value

In this section we describe the value functions for owners and non-owners and we provide

an expression for the reservation value ∆. These objects are analogous to the ones derived in

subsection 3.3. The difference here is that we use the expected gains from trade of owners and

non-owners, πo and πo, that we computed in subsection C.1.2 instead of the one in subsection

3.2. The value function for an owner of a type θ is given by

rVo(θ) = ν− µ
[
Vo(θ)−Vn(θ)

]
+ λ(1− s)πo(θ). (55)

Likewise, the value function for a non-owner of type θ is,

rVn(θ) = η
[

max{Vo(θ), Vn(θ)} −Vn(θ)
]
+ λsπn(θ). (56)

Using equations (55)-(56), we can compute the reservation value function for an investor of type

θ, ∆(θ) ≡ Vo(θ)−Vn(θ). The reservation value ∆(θ) solves

r∆(θ) = ν− µ∆(θ)− η max{∆(θ), 0}+ λ(1− s)πo(θ)− λsπn(θ). (57)
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C.1.4 The distribution of assets

The change over time in the density of owners with type θ is

φ̇o(θ) = ηφn(θ)1{∆(θ)≥0} − µφo(θ)− λφo(θ)q̄o(θ) + λφn(θ)q̄n(θ), (58)

where

q(θo, θn) = [1− (1− αo)(1− αn)]1{∆n≥∆o} + (1− αo)(1− αn)p(∆o, ∆n) (59)

is the probability of trade between a type θo owner and a type θn non-owner,

q̄o(θ) =
∫

q(θ, θn)φn(θn)dθn (60)

is the probability that a type θ owner sells an asset in a meeting, and

q̄n(θ) =
∫

q(θo, θ)φo(θo)dθo (61)

is the probability that a type θ non-owner buys an asset in a meeting. The difference between the

law of motion in (12) and (58) comes from the use the Myerson and Satterthwaite (1983) trade

mechanism. We can see this from the equations for q(∆o, ∆n) in the two different settings.

As in subsection 3.4, we can obtain an expression for the density of non-owners of type θ

from the equilibrium condition

φo(θ) + φn(θ) = f (θ), (62)

and an expression for total asset supply is given by

s =
∫

φo(θ)dθ. (63)

C.1.5 Equilibrium

We focus on symmetric steady-state equilibrium.

Definition 2. A family of direct mechanism, reservation values and distributions, {m = (p, x), ∆, φo, φn, s},
constitutes a symmetric steady-state equilibrium if it satisfies:

1. the mechanism m = (p, x) solves problem (48);

2. the reservation value of investors ∆(·) is continuous and satisfies (57), where πo and πn are given

by (53) and (54); and

3. the density of owners φo satisfies (58) with φ̇o = 0, the measure of non-owners φn satisfies (62), and

the stock of assets s satisfies (63).

As in section 4, the equilibrium definition does not include the value functions Vo and Vn

because we can recover them from (55) and (56).

Proposition 13. There exists a symmetric steady-state equilibrium.
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C.1.6 Intermediation

The trade protocol used here differs from the one used in Section 5, but our results regarding

trading speed and centrality are the same.

Efficient ex-post trade in a bilateral meeting means that the buyer acquires the asset whenever

her reservation value is above the reservation value of the seller. That is, if trade is ex-post

efficient, then the probability of trade is 1{∆n≥∆o}. The Myerson and Satterthwaite (1983) implies

that, under private information,33 efficient ex-post trade cannot be achieved.

Proposition 14. Consider a symmetric steady-state equilibrium {m = (p, x), ∆, φo, φn, s}. Then, efficient

ex-post trade in the bilateral meetings is not achieved. That is, p(∆o, ∆n) < 1{∆n≥∆o} for a positive measure

of ∆o and ∆n. Moreover,

•
∫

p(∆o, ∆n)dMn <
∫

1{∆n≥∆o}dMn, and

•
∫

p(∆o, ∆n)dMo ≤
∫

1{∆n≥∆o}dMo, with strict inequality if ∆n > 0.

The probability of trade between a type θo owner and a type θn non-owner is

q(θo, θn) = [1− (1− αo)(1− αn)]1{∆n≥∆o} + (1− αo)(1− αn)p(∆o, ∆n).

Since αo and αn are smaller than one with positive probability, Proposition 14 implies that q(θo, θn)

is smaller than one for a positive measure of θo and θn. Moreover, keeping the reservation value

constant, we have that

q(θo, θn)

∂αo

∣∣∣
∆(θo)=∆̄

= (1− αn)
[
1{∆n≥∆o} − p(∆o, ∆n)

]
.

In a similar way,
q(θo, θn)

∂αn

∣∣∣
∆(θn)=∆̄

= (1− αo)
[
1{∆n≥∆o} − p(∆o, ∆n)

]
.

This brings us to our next result.

Proposition 15. Consider a symmetric steady-state equilibrium {m = (p, x), ∆, φo, φn, s}, and let the

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then,

• q̄o(θ) > q̄o(θ̂), and

• q̄n(θ) ≥ q̄n(θ̂), with strict inequality if ∆(θ) = ∆(θ̂) > 0.

Proposition 15 is intuitive. We know from Proposition 14 that trade is distorted in meetings

under private information—that is, p(∆o, ∆n) < 1{∆n≥∆o} for a positive measure of ∆o and ∆n.

Since investors with higher screening expertise are less likely to be in those meetings, they are

less likely to have their trades distorted.

From Proposition 15 we can derive our main centrality result below.

33To be more specific, without common knowledge of gains from trade and connected support for valuations.
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Proposition 16. Consider a symmetric steady-state equilibrium {m = (p, x), ∆, φo, φn, s}, and let the

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then,

• if ∆(θ) = ∆(θ̂) < 0, we have that c(θ) = c(θ̂) = 0, and

• if ∆(θ) = ∆(θ̂) ≥ 0, we have that c(θ) > c(θ̂) > 0.

Moreover, if an investor type θ∗ = (α∗, ν∗) is the most central, then α∗ = 1 and c(θ∗) > c(θ) for all

θ ∈ Θ satisfying α < 1.

89


	Introduction
	Environment
	Price setting, asset valuations, and allocations
	Bilateral trade
	Expected gains from trade
	Value functions and reservation values
	The distribution of assets

	Equilibrium
	Private Information and Intermediation
	Screening ability and centrality
	Screening ability and middleman activity
	Screening ability and trading network
	Screening ability and rents

	Empirical Analysis
	The CDS data
	The role of information in shaping up trade outcomes
	Model predictions about the effects of a 13-F filing 
	The 13-F data
	The merged dataset
	The effects of a 13-F filing on CDS trade
	Information revelation and market liquidity
	Discussion of empirical results

	Intermediation in the CDS-Index Market
	Centrality and middleman activity
	Centrality and the number of counterparties


	Concluding remarks
	Appendix: Proofs
	Price distortions
	Optimal Mechanisms
	The optimal selling mechanism as an ask price
	The optimal buying mechanism as a bid price

	Equilibrium
	Private Information and Market Structure
	Extension with 13-F investors

	Appendix: Additional Empirical Results
	Merging the CDS and 13-F datasets
	Filing around the 45 day limit
	Trading activity around the filing date
	Can a model of signaling explain the observed trade outcomes?

	Online Appendix - Not For Publication
	An alternative trade mechanism 
	Bilateral trade
	Expected gains from trade
	Value functions and reservation value
	The distribution of assets
	Equilibrium
	Intermediation



